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 Mathematical model representing the dynamic indoor air temperature of a 

building is important for reducing the time and cost required to test any 

proposed thermal comfort control algorithm and strategy for that building 

through computer simulation. There are many types of mathematical model, 

and each type has its strength(s) and weakness(es). An autoregressive–

moving-average (ARMA) model, a type of black box model is used to 

represent the dynamic indoor air temperature behaviour of industrial 

instrumentation laboratory at Malaysia-Japan international institute of 

technology (MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur 

based on the recorded data from the laboratory and minimal physical 

characteristics knowledge of the laboratory. The ARMA model‟s output 

developed in this research is compared with the actual data recorded from the 

laboratory for performance measurement. The obtained result shows that the 

ARMA model is sufficient for modelling and simulating the dynamic indoor 

air temperature behaviour of the laboratory. 
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1. INTRODUCTION  

Modelling and simulation of a building's hygrothermal (temperature and humidity) behaviour is 

important to help to design and optimise any proposed building thermal comfort control algorithm and 

strategy. It is possible to design and optimise the proposed control algorithm and strategy on the real site, but 

https://creativecommons.org/licenses/by-sa/4.0/
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doing so is time-consuming and costly. To solve this problem, mathematical models describing the dynamic 

hygrothermal behaviour of the building are developed so that any proposed control algorithm and strategy 

can be designed and optimised quickly and cost-effectively. In addition, the developed mathematical model 

can also be used for developing and optimising predictive controller such as model predictive controller 

(MPC). 

Like other models, the dynamic indoor air temperature behaviour of a building can also be modelled 

by using three types of model: (1) the white box model, also referred to as theoretical model; (2) the black 

box model, also referred to as empirical model; and (3) the grey box model, also referred to as semi-empirical 

model. The white box model of a system is developed based on the system‟s physical knowledge [1], also 

referred to as the fundamental knowledge of science and engineering [2]. The black box model is developed 

by tuning the constant(s) in linear or non-linear „off-the-shelf‟ equation(s) based on the input(s)-output(s) 

data of the plant that is going to be modelled until the output(s) of the black box model almost matches (as 

accurately as possible) the output(s) of the plant. The grey box model is the combination of some parts of the 

white box model and some parts of the black box model – the equation(s) in the grey box model is(are) based 

on the theoretical knowledge of the plant while the unknown parameter(s) in the grey box model is(are) tuned 

based on the real input(s)-output(s) data generated by the plant. 

Each type of model has its own strength(s) and weakness(es). The white box model can be simulated 

in a broader range of operating condition, but it is time-consuming and costly to develop this model if the 

system to be modelled has complex physical characteristic(s) [1]. In some situation, it is difficult to develop 

the white box model because the constant(s) in the model is(are) not available, obtainable, or measurable 

during the model development [1]. The black box model is simpler to build, but the model does not 

extrapolate well beyond the data used to estimate the model, known as the training data set [1]. The available 

training data set usually does not cover the whole operating condition of the plant that is going to be 

modelled, so caution must be taken if there is any requirement to simulate the developed model beyond the 

range of the training data set [1]. However, it is reported that the black box model is popular in the industry 

[1]. Meanwhile, the grey box model provides the physical insight similar to the white box model because the 

grey box model is also built based on the fundamental knowledge of science and engineering, but the 

unknown constant(s) in the grey box model is(are) estimated by using the input(s)-output(s) data of the 

modelled plant similar to the black box model. Therefore, the grey box model can be developed faster and 

easier than the white box model and can be simulated across a broader range of operating condition than the 

black box model [1]. 

Various researchers had developed various types of mathematical models describing the building‟s 

dynamic indoor air temperature behaviour. Nguyen et al. [3] created a SIMULINK®-based simulation 

toolbox called House Thermal Simulator to simulate the dynamic indoor air temperature of iHouse, a smart 

house testbed belongs to Japan Advanced Institute of Science and Technology (JAIST) by using a large 

number of equations based on the grey box model describing how the controllable inputs and uncontrollable 

disturbances affect the iHouse's dynamic indoor air temperature – the unknown parameters in these equations 

were estimated using the Simulink Design Optimization toolbox in MATLAB® based on the actual recorded 

data from iHouse. Then, Hussein et al. developed a black box model to simulate the dynamic indoor air 

temperature of one of the rooms in the same iHouse in [4] with minimal thermal-related physical knowledge 

of the smart house testbed. After that, Hussein et al. simplified the model developed in [4] to become a grey 

box model in [5] based on more thermal-related physical knowledge of the smart house testbed. Nguyen et al. 

used the House Thermal Simulator developed in [3] to propose a simple model predictive controller (MPC) 

in [6] to control the heating, ventilation, and air conditioning (HVAC) systems in residential houses through 

simulation and optimised the controller for both energy efficiency and thermal comfort. Next, Ooi et al. 

developed their mathematical models in [7] for developing and optimising a conventional MPC via computer 

simulation to maintain the air temperature of one of the bedrooms in iHouse – this work is then improved by 

Ooi et al. in [8] by using the adaptive MPC that utilises two types of online model estimation system, the 

Kalman filter (KF) state estimator and the linear time-varying Kalman filter (LTVKF) estimator for 

increasing the accuracy of the controller‟s internal plant model.  

Lim et al. in [9] used a simple white box model representing the thermal behaviour of one of the 

rooms in iHouse to examine and discuss the issues of implementing the energy-efficient thermal comfort 

control (EETCC) system via cyber-physical system (CPS) technique for monitoring, maintaining, and 

controlling the desired thermal comfort level using three actuators, which are: (1) air conditioner; (2) 

window; and (3) curtain. Radecki et al. in [10] proposed the implementation of a multimode unscented 

Kalman filter (UKF) as a generalisable online grey-box model based on the basic physical knowledge of the 

building combined with measured building data to estimate the dynamics of a multi-zone building and to find 

out the unknown time-varying thermal loads of that building – the general and scalable method of developing 

this control-oriented thermal model is deployable in a wide-scale for cost-effective predictive controls. 
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Mustafaraj et al. in [11] used the following models to predict the room temperature and relative humidity of a 

visa building in London: (1) autoregressive model with external inputs (ARX); and (2) neural network-based 

non-linear autoregressive model with external inputs (NNARX) – their results showed that both ARX and 

NNARX performed well, but the NNARX performed better than ARX.  

Mustafaraj et al. in [12] studied the quality of the following models to predict an open-plan office‟s 

thermal behaviour in Portman House in central London: (1) a neural network-based non-linear autoregressive 

model with external inputs (NNARX); (2) a non-linear autoregressive moving average model with external 

inputs (NNARMAX); (3) and a non-linear output error model (NNOE) – their results indicated that all 

models performed equally well, but the NNARX and NNARMAX models outperformed the NNOE model. 

Afram et al. in [13] developed the grey box models of the residential HVAC system using the data recorded 

at the instrumented Toronto and Region Conservation Authority Archetype Sustainable House (TRCA-ASH) 

located at Kortright Centre for Conservation in Vaughan, Ontario, Canada as a tool to investigate the effects 

of advanced controllers and energy conservation strategies via simulation before implementing them on the 

real system – this model is comprised of several subsystems such as energy recovery ventilator (ERV), air 

handling unit (AHU), buffer tank (BT), radiant floor heating (RFH) system, and zone and ground source heat 

pump (GSHP) that can be estimated individually and then combined to get the complete system model. The 

same work in [13] was repeated by Afram et al. in [14, 15] for the same purpose, but this time each of the 

same subsystems at TRCA-ASH was remodelled using different types of black box model, which are: (1) 

artificial neural network (ANN); (2) transfer function (TF) model; (3) process model, (4) state-space (SS) 

model; and (5) autoregressive exogenous(ARX) – result shows that all the black box models developed in 

[14, 15] outperformed the grey box model developed in [13]. After that, Afram et al. extended his work in 

[13] to be a multi-zone residential HVAC system in [16] to use it to design the simulation and experimental 

framework for MPC based supervisory controller to shift the heating and cooling load of a house that were 

controlled using on-off controllers outside peak hours for significant heating and cooling costs savings.  

Sturzenegger et al. in [17] proposed and tested the derivation of MPC-compatible reduced-order model 

of a medium-size representative office in Allschwil, Switzerland which is equipped with the following thermal 

comfort actuators: (1) thermally activated building system (TABS); air handling unit (AHU); and (3) centrally 

controlled blinds. Sturzenegger et al. also modelled the same building in [17] using a physics-based bilinear 

model for MPC in [18] to control the thermal comfort actuators and compared its performance with the existing 

industry-standard rule-based control (RBC). A. Safa et al. in [19] developed a house model in TRNSYS, one of 

the commercial building energy simulation programs based on the design and parameters of the TRCA-ASH. 

Then, Alibabaei et al. in [20] developed a MATLAB®-TRNSYS co-simulator, an integration between 

MATLAB® and TRNSYS to control or manage the TRCA-ASH model developed in [19] by using the 

advanced controller designed in MATLAB® using the following predictive strategy planning models: (1) Load 

Shifting (LSH); (2) Smart Dual Fuel Switching System (SDFSS); and (3) the integration between LSH and 

SDFSS (LSHSDFSS). De Coninck et al. in [21] identified the model of Kalkkaai building, the headquarter of 

3E, an independent global consultancy services and software products company situated in Brussels, Belgium 

by using used the Grey-Box Buildings toolbox, an open-source Python toolbox based on a Modelica library. 

Then, De Coninck et al. used the model identified in [21] to implement an MPC in [22] for thermal comfort 

control and cost saving, and compared its performance with the default rule-based control (RBC) at the 

Kalkkaai building. Hazyuk et al. in [23] used physical knowledge to determine the black box model's structure, 

then used the model to represent the dynamic behaviour of the indoor temperature of a typical detached house in 

France, which was used by Centre Scientifique et Technique du Bâtiment (CSTB)/Building Scientific and 

Technical Centre as one of the reference building for performance assessment. 

This research focuses on constructing the model describing the dynamic indoor air temperature 

behaviour of the Industrial Instrumentation Laboratory at Malaysia-Japan International Institute of 

Technology (MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur. Similar work has been done by 

the main author in [4, 5], but this time it is repeated in a different location so that it will be easier for the main 

author to expand his work in the future. To save time, cost, and other limited resources by the time this 

research is done, only the autoregressive–moving-average (ARMA) model, a type of simple linear black box 

model is used in this research to develop the model with minimal physical knowledge. 

 

 

2. RESEARCH METHOD  

2.1.  Scope of research 

Only the weather-related inputs are used for the model developed in this research. The Industrial 

Instrumentation Laboratory is equipped with air conditioners and ventilation fans, but the data available by 

the time this research is done is recorded when these thermal comfort devices are not operated – newer data 

will be recorded while these thermal comfort devices are operated for the model‟s future upgrade. 
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2.2.  The research location 

The Industrial Instrumentation Laboratory at Malaysia-Japan International Institute of Technology 

(MJIIT), Universiti Teknologi Malaysia (UTM) Kuala Lumpur is selected as the plant to be modelled in this 

research. The laboratory is located on the 7
th

 floor (based on the US-style) or the 6
th

 floor (based on the UK-

style) of the MJIIT building. It is also located at the front-side of the building (which is also the western side 

of the building) on the south wing. 

The typical floor plan of the Industrial Instrumentation Laboratory is shown in Figure 1. Based on 

this figure, it is shown that the Industrial Instrumentation Laboratory is surrounded by the following spaces: 

(1) the staircase in the north-west; (2) the lift lobby in the north; (3) the corridor in the east; (4) the outdoor 

space in both the south and the west; (5) a classroom at exactly one level below the laboratory (on the 6
th

 

floor based on the US-style or the 5
th

 floor based on the UK-style and is not shown in Figure 1, and (6) 

another classroom at exactly one level above the laboratory on the 8th floor based on the US-style or the 7
th

 

floor based on the UK-style and is also not shown in Figure 1. 

 

 

 
 

Figure 1. The typical floor plan of the industrial instrumentation laboratory at the 7
th

 floor (based on the US-

style) or the 6
th

 floor (based on the UK-style) of the MJIIT building 

 

 

2.3.  The data recording devices 

Various types of data are recorded at the Industrial Instrumentation Laboratory and its surrounding 

spaces by using various types of recording devices. The recorded data is divided into two categories, which 

are the indoor data and outdoor data. The indoor data is recorded using home-made low-cost data loggers 

using off-the-shelf sensors connected to single-board microcontrollers (such as Arduino) or single-board 

computers (such as Raspberry Pi). There are two types of data recorded by these indoor data loggers by the 

time this research is done, which are the indoor air temperature and the indoor relative humidity. These data 

loggers are installed in the Industrial Instrumentation Laboratory and the surrounding indoor spaces as 

mentioned in Subsection 2.2 (The Research Location), which are: (1) the laboratory itself; (2) the staircase in 

the north-west; (3) the lift lobby in the north; (3) the corridor in the east; (4) the classroom at exactly one 

level below the laboratory; and (5) the other classroom at exactly one level above the laboratory. Meanwhile, 

the outdoor data is obtained from the readily available weather station belongs to the Wind Engineering for 

(Urban, Artificial, Man-made) Environment Laboratory, one of the laboratories in MJIIT. The weather 

station is located at the rooftop of the MJIIT building. There are various types of data recorded by the 

weather station, including: (1) the outdoor air temperature; (2) the outdoor relative humidity; (3) the wind 

speed and direction; and (4) the global solar radiation. However, only the indoor and outdoor data related to 

air temperature and solar radiation is used in this research. The types of solar radiation that are used as the 
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inputs for this research are direct solar radiation and diffuse solar radiation, and their values are obtained by 

splitting the value of actual recorded global solar radiation into the values of direct solar radiation and diffuse 

solar radiation through calculation. 

 

2.4.  The data recording period 

All the data required for this research is recorded for 11 days, from the 5
th

 of February 2019 until the 

15
th

 of February 2019 and this data is recorded at every one-minute interval. The recorded data is then 

divided into two parts, which are: (1) the first group (recorded for the first five days from the 5
th

 of February 

2019 until the 9
th

 of February 2019); and (2) the second group (recorded for the remaining six days from the 

10
th

 of February 2019 until the 15
th

 of February 2019). It is mentioned earlier in Section 1 (Introduction) that 

the black box model cannot extrapolate very well when it is simulated beyond the range of the training data 

set [1]. Based on the recorded data, it is observed that the output data for the second group has a wider 

maximum-minimum range and overlaps the maximum-minimum range of the output data for the first group. 

Therefore, it is decided in this research that the second group of the data is assigned as the training data set 

while the first group of the data is assigned as the testing data set. It is also decided in this research that the 

duration of the training data set is longer than the testing data set – this is the reason why the number of days 

for the training data set is one day more than the testing data set (six days versus five days). 

 

2.5.  The inputs-output data selection 

The types of input that are considered able to affect the indoor air temperature behaviour of the 

Industrial Instrumentation Laboratory are listed, which are: (1) the past and present indoor air temperature of 

the laboratory itself,           ; (2) the past and present air temperature difference between the staircase in 

the north-west and the laboratory itself,                  ; (3) the past and present air temperature difference 

between the lift lobby in the north and the laboratory itself,                      ; (4) the past and present air 

temperature difference between the corridor in the east and the laboratory itself,                     ; (5) the 

past and present air temperature difference between the outdoor space in both the south and the west and the 

laboratory itself,                    ; (6) the past and present air temperature difference between the 

classroom at exactly one level below the laboratory and the laboratory itself,                       ; (7) the 

past and present air temperature difference between the classroom at exactly one level above the laboratory 

and the laboratory itself,                       ; (8) the past and present direct solar radiation that lands on 

the southern outer-wall of the laboratory,                  ; (9) the past and present direct solar radiation that 

lands on the western outer-wall of the laboratory,                 ; and (10) the past and present diffuse solar 

radiation that lands on both the southern and western outer-walls of the laboratory,               . 
Meanwhile, only one output is considered for the model in this research, which is the future indoor air 

temperature of the laboratory itself,           . The listed inputs and output lead to the construction of the 

multiple-input and single-output (MISO) model, which is depicted in Figure 2. 

 

 

 
 

Figure 2. The ARMA model describing the air temperature of the industrial instrumentation laboratory 
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2.6.  The black box model construction 

The general ARMA model was described by Peter Whittle in his thesis in 1951 [24] and was 

popularised by the book written by George Box and Gwilym Jenkins in 1970 [25]. The general equation of 

the ARMA model is shown in (1): 

 

 [ ]       ∑    [   ]
 
    ∑    [   ]

 
     (1) 

 

where 

 [ ] is the output variable, 

 [ ] is the input variable, 

  is the number of past output(s), 

  is the number of past input(s), 

  is the parameter for the output variable, 

  is the parameter for the input variable, 

  is a constant, 

   is the white noise random variable. 

From (1) it can be seen that: (1) the model is for a single-input and single-output (SISO) system with 

one type of input and one type of output; (2) the numbers of past input(s) and past output(s) are different, 

which are   and  ; and (3) there are two more additional constant and variable,   and   . Some modifications 

are done with (1) to fit the requirement of this research: (1) the number of types of input is increased from 

one type of input to   types of input since the system that is going to be modelled in this research is a 

multiple-input and single-output (MISO) system with   types of input and one type of output; (2) the different 

number of the past input(s) and past output(s) of the model,   and   are standardised as   to simplify the 

model‟s regression algorithm; and (3) the constant   and the white noise random variable    are assumed to 

be zero and omitted, also to maintain the simplicity of the model‟s regression algorithm. Hence, the modified 

(2): 

 

 [ ]  ∑    [   ]
 
    ∑ (∑      [   ]

 
   ) 

     (2) 

 

where 

 [ ] is the output variable, 

 [ ] is the input variable, 

  is the number of types of inputs, 

  is the number of past input(s) and past output(s), 

  is the parameter for the output variable, 

  is the parameter for the input variable. 

Based on (2) and the inputs-output data summarised in Figure 2, the ARMA model with   past 

input(s) and past output(s) representing the dynamic indoor air temperature behaviour of the Industrial 

Instrumentation Laboratory is written as (3): 

 

          [ ]  ∑             [   ]
 
    ∑                    [   ]

 
    (3) 

 ∑                        [   ]
 
    ∑                       [   ]

 
     

 ∑                      [   ]
 
    ∑                         [   ]

 
     

 ∑                         [   ]
 
    ∑              [   ]

 
     

 ∑              [   ]
 
    ∑            [   ]

 
     

 

As shown in (3) can be written in expanded form as(4): 

 

          [ ]              [   ]              [   ]                  [     ] (4) 

             [   ]                     [   ]                     [   ]  

                        [     ]                     [   ]     

           [   ]            [   ]                [     ]  

            [   ]  

 

2.7.  The black box model regression 

„Regression‟ for the statistical model (or „training‟ for the artificial neural networks) is the process 

of estimating the unknown parameter(s) in the model (or neural networks) based on the training data set. First 
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of all, the training data set for this research has to be arranged in the inputs-output matrix. If the training data 

set is recorded from     until    , this means that the number of available sampled data is  . In this 

research, the value of   is equal to the number of times the data is sampled every minute from the 10
th

 of 

February 2019 until the 15
th

 February 2019, which is     . When the data from   previous step(s) [can also 

be called as   sampling interval(s)] is used to regress the dynamic indoor air temperature of the Industrial 

Instrumentation Laboratory from     until    , the number of input-output pairs are equal to    . This 

can be shown in the matrices in (5): 

 

      (5) 

 

where 
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and   [                                  ]
 . 

 

From (1) until (5) we can see that the ARMA model is a type of linear equation. The unknown 

parameters for the ARMA model developed in this research are located in the matrix   in (5). The values of 

these unknown parameters are estimated by using the least-squares estimation approach (also called „linear 
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regression‟), which is widely used for linear model parameters estimation [1]. This approach generates the 

values of the parameters by minimising the sum of squared errors between the output of the actual data and 

the output produced by the linear models [1]. The least-squares estimation approach formula used to estimate 

the contents of matrix   is written as (6): 

 

  (   )      (6) 

 

After the values of the required parameters are estimated, the regressed ARMA model is then 

simulated using the same training data set to check its ability to fit the data set. Then, the model is tested and 

optimised using testing data set, which is a new data set that has never been „seen‟ by the estimated ARMA 

model (has never been used for estimation purpose) and will be described in the Subsection 2.8 (The Black 

Box Model Testing). 

 

2.8.  The black box model testing 

In this process, the estimated ARMA model is simulated with a new set of data that is not used 

during the training process for parameter estimation, which is the testing data set. The purpose of this process 

is to ensure that the estimated model can still perform as accurate as possible when the model is simulated 

with the input data that is different than the training data set. If the testing data set is recorded from     

until    , this means that the number of available sampled data is  . In this research, the value of   is equal 

to the number of times the data is sampled every minute from the 5
th

 of February 2019 until the 9
th

 of 

February 2019, which is     . When the data from   previous step(s) [(can also be called as   sampling 

interval(s)] is used to test the dynamic indoor air temperature of the Industrial Instrumentation Laboratory 

from     until    , the number of input-output pairs are equal to    . 

 

2.9.  The black box model optimisation 

The only parameter that can be adjusted in the ARMA model for optimisation is the number of past 

input(s) and past output(s), which is the value of   in (3), (4), and (5). The bigger the value of  , the more the 

quantity of constant(s) available in the matrix   in (3) (and vice versa). Instead of assigning the value of   

randomly and manually using trial and error method to search for the best value of   based on the data 

recorded in this research, a MATLAB® script is written to try the possible values of   one by one within the 

predefined minimum   value to the predefined maximum   value. Due to time constraint, the value of   in 

this research is tried one by one only from     until      – the calculation of      begins at    , 

then the   value is added by 1 and the calculation of      is done again repetitively until     . Even 

though the percentage of fitness,      is calculated for each tested value of  , only the identified   value 

that gives the best (highest) value of      is retained in this process. The formula to calculate      are 

shown in the (7): 

 

     [  
    ( ̂                    )

    [               (          )]
]  (7) 

 

where 

 ̂          is the output calculated using the optimised ARMA model, 

           is the actual recorded output data. 

 

 

3. RESULTS AND ANALYSIS 

The best-obtained result when the value of   is tested one by one from     until      is when 

    . The output of the optimised ARMA model when      is plotted and displayed in Figure 3 

together with the actual output data for comparison purpose. Meanwhile, the percentage of fitness,      
value for the output of the optimised ARMA model when      during simulation is presented in Table 1. 

Based on the obtained result, the optimised ARMA model proposed in this research can fit the actual 

data sufficiently. This is supported by the result presented in Figure 3 and Table 1. However, the level of 

accuracy obtained in this research can still be improved. For future work, it is suggested to try modelling the 

same data with different types of black box model, both linear and non-linear models to investigate their 

performance fitting the same data. In addition, it is also suggested to try the grey box or even the white box 

modelling to gain the physical insight into the dynamic indoor air temperature behaviour of the Industrial 

Instrumentation Laboratory. Furthermore, it is also suggested to upgrade the developed models with 

controllable inputs from the thermal comfort devices such as the air conditioner, ventilation fan, and motor-

operated window etc. so that the obtained model can be used for testing any thermal comfort control 
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algorithm or strategy for the thermal comfort devices in the future. In addition, this upgraded models with 

controllable inputs can also be used to develop and optimise predictive controllers such as model predictive 

controller (MPC). 

 

 

 
 

Figure 3. The simulation result for the optimised ARMA model when      during the simulation using the 

training data set (top) and testing data set (bottom) 

 

 

Table 1. The percentage of fitting,      for the optimised ARMA model when      during the simulation 

using the training data set and testing data set 
Data Percentage of Fitting,      (%) 

Training Data Set 87.45 
Testing Data Set 80.36 

 

 

4. CONCLUSION  

The objective of this research is to construct a mathematical model describing the dynamic indoor 

air temperature behaviour of Industrial Instrumentation Laboratory by using autoregressive–moving-average 

(ARMA) model, a type of linear black box model. From the result of this research, it is shown that a data-

driven black box model developed with suitable inputs-output combination and minimal physical knowledge 

regarding the plant prior to modelling is still capable of producing output that is almost similar with the 

actual output from the plant. The contribution of this research is the development of a mathematical model 

for system simulation in a limited time frame with limited physical knowledge of the system. 
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