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 The role of the grounding system in the safety of the power system  
and protection of personnel is obvious during an unexpected short circuit  
or lightning discharge at the substation. The aim of this work is to analyze 

the effects of several parameters: lightning impulse front time, soil resistivity 
and types of grid materials on the grounding system of the Substation.  
The ground potential rise (GPR), touch voltage and step voltage of a 50 m x 
60 m grounding grid buried at a depth of 0.5 m were computed using 
CDEGS when injected by impulse with different front times. Results show 
that the shorter the front time of lightning impulse waveform, the higher  
the value of GPR, touch voltage and step voltage. Meanwhile, when  
the value of soil resistivity is increased, the value of GPR, touch voltage  

and step voltage is also increased. Lastly, different types of grid conductor 
materials give different values of GPR, touch voltage and step voltage. 
However, it can be said that the differences are too small to be of any 
significance. 
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1. INTRODUCTION  

The role of a proper grounding system of the substation is very vital. The role of the grounding 

system comes into play for the protection of power grid equipment’s and personnel safety, During normal 

and in an unexpected lightning interruption on substation. Lightning impulse on the substation can be 

classified into lightning impulse current waveform and lightning impulse voltage waveform. Two types  

of lightning impulse current waveforms which are direct lightning current and indirect lightning  
current waveform. the level of voltages should be made minimum as possible to ensure the reliability and 

safety of the substation. 

When designing the grounding system of a substation, Ground potential rise (GPR), touch voltage, 

and step voltage are considered as an important parameter to be observed and analyzed. A good design 

should maintain the value of touch voltage and step voltage under the safety limits. In addition, the grounding 

system design should have a very low ground resistance with a tolerance of touch voltage and step voltage 

limits [1]. A higher than expected potential rise can cause harm to the safety of a person nearby and also to 

the equipment of the substation. 
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Previous studies have proven that the transient characteristics of a grounding grid were far more 

different than those at power frequency because of associated inductance and soil ionization under high- 

frequency transients [2-7]. Often, the shape of the lightning impulse can affect the resultant voltage profiles, 

namely, the touch potential, the step potential and the GPR of the grounding system. Lian et al. [4] studied 

the effects of several parameters on the ground impedance, based on two lightning impulse current shapes, 

namely 2.6/50µs and 8/20µs currents. Several authors [2, 4, 7, 8] have reported the influence of the lightning 

impulse points of injection (such as at the grid corner and center points) on the grounding grid performance. 

Tian et al. [2] carried out a study on the lightning transient characteristics of a 500kV substation grounding 
grid meanwhile Lian et al. [4] focus their study on the 110kV substation. 

Despite the above studies, the effects of other injection points of the grid at a transmission voltage 

level typical in Malaysia, namely 275 kV, on the transient performance of the grid is desired to be known. 

Further examination needs to be done to study the effects of soil resistivity and grounding grid materials.  

A better understanding of the performance of the grounding system design under the lightning impulse 

current can help in a better design of a grounding system. 

 

 

2. RESEARCH METHOD 

The effects of grid sizes on the grid performance in terms of grid potential rises were well studied  

[9-21]. In this work, a constant grid size was chosen (5 m spacing). The grounding grid model was modelled 

using HIFREQ module of the CDEGS software. The grounding grid was designed with a total area of 50 m ×50 m, 
at a depth of 0.5 m, and using conductors with a radius of 0.1 mm. The inter conductor distance is 5.0m.  

The soil resistivity was fixed at 100 .m. Figure 1 shows the modelled grounding used in the simulation work. 
 

 

 
 

Figure 1. Grounding grid model 

 

 

The input waveforms were then designed. The lightning impulse voltage front time waveform was 

varied to analyze the effects of front time waveform on the grounding grid model. A double exponential 

lightning type signal with the amplitude maintained constant at 30 kA was used. Three impulse shapes 
defined by the front time were simulated. These are 1.2/50 μs, 5/50 μs, and 10/50 μs waveforms.  

Since CDEGS is a frequency-based software, the fast Fourier transform (FFT) module was used to convert 

the time domain waveform into its equivalent frequency domain components. Figures 2 to 4 show the three 

input waveforms used in the simulations. 

 

 

 
 

Figure 2. 30 kA peak, 1.2/50 µs lightning current 

 
 

Figure 3. 30 kA peak, 5/50 µs lightning current 
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Figure 4. 30 kA peak, 10/50 µs lightning current 

 

 
3. RESULTS AND ANALYSIS 

The effects of three different parameters which are The lightning current front time, the soil 

resistivity and the type of grid conductor on the GPR, touch voltage and step voltage were investigated using 

the frequency domain HIFREQ module. The module automatically computes the frequency response of all 

equivalent frequency components of the lightning current obtained using the FFT module. The response in 

time domain was then obtained using the inverse fast Fourier transform (IFFT) module. Several observation 

points were made including at the middle point of the grounding grid. 

 

3.1. Effects of lightning impulse front time 

The chosen injection and observation points are both in the middle of the grounding grid. A 30 kA, 

1.2/50 s current was injected at the central location and the soil resistivity was fixed at 100 .m. A copper 
type conductor was used. The effects of the current front time on the maximum GPR, touch voltage and step 

voltage at that point were analyzed. Figure 5 to 7 shows the effects of the current front time on the maximum 

GPR, touch voltage and step voltage. 
 

 

 
 

Figure 5. Variation of Maximum GPR with  

front time 

 
 

Figure 6. Variation of maximum touch voltage with 

front time 
 

 

 
 

Figure 7. Variation of maximum step voltage with the front time 
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The results show that a faster current front causes the potential rise to be higher than the slower 

fronts. If the grounding grid was designed using AC 50 Hz frequency, the expected potential rises would be 

much smaller. If the design did take consideration of the transient effects, the choice of front time plays  

an important role. It is not unusual for lightning current front time to be as fast as 1 s, and hence 
consideration of this fast front transient should be considered when designing a grounding grid. 

 

3.2. The effects of soil resistivity 

The maximum GPR, touch voltage and step voltage on the grounding grid model were analyzed by 

varying the value of the soil resistivity from 100 .m to 300 .m. A 30 kA, 1.2/50 s current was used.  
Both the injection point and the observation point are at the centre of the grid. The observed results are 

shown in Figures 8 to 10. 
 

 

 

 

Figure 8. Variation of maximum GPR with soil 

resistivity 

 
 

Figure 9. Variation of maximum touch voltage with 

soil resistivity 

 

 
 

 
 

Figure 10. Variation of maximum step voltage with soil resistivity 

 
 

It can be clearly seen that GPR, touch and step voltages increase as the soil resistivity increases. 

This is somewhat expected since the potential rise is proportional to the equivalent resistance of the grid 

which is directly related to the soil resistivity. In other words, there is a risk to the personnel safety if the soil 

is having its resistivity rises to values higher than the initial value used in the grounding grid design. 

 

3.3. The effects of grid conductor material 

Three different types of grid conductor materials were simulated. These materials includes Pure 

Copper, pure Iron and Steel Rail with the resistivity of 1 Ω.m, 1.64 Ω.m, and 5.7 Ω.m, respectively.  

These give a corresponding relative conductivity for pure copper, pure iron and steel rail as 100 %, 17 %,  

and 15 %, respectively. A constant soil resistivity value of 100 Ω.m was maintained during the simulation 

while the 30 kA peak, 1.2/50 µs type of lightning impulse current was used. The observation point was at the 
center of the grounding grid. Figures 11 to 13 shows the variation of GPR, maximum touch voltage and 

maximum step voltage with respect to the grind conductor materials. 
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Figure 11. Variation of maximum GPR with grid 

conductor material 

 
 

Figure 12. Variation of maximum touch voltage with 

grid conductor material 

 

 
 

 
 

Figure 13. Variation of maximum step voltage with grid conductor material 

 

 

Based on Figures 11 to 13, the steel rail has the highest value of GPR, touch voltage and step 

voltage followed by pure iron and pure copper. In other words, a grid made with conductors having larger 

resistivity results in a higher GPR, touch voltage and step voltage. However, the relative differences in  

the potential between all conductor types and hence their effect on safety can be said as negligible. The above 
results show that several parameters can influence the grid transient performance. Other parameters may also 

influence the grid performance. It is well known that soil behaves differently when subjected to large 

transient currents such as having ionization phenomenon within the soil grains [22-26]. The effects of soil 

ionization were not however modelled when the design is based on AC 50 Hz frequency or even short circuit 

current. This shows that modeling and properly design a grounding grid including its transient response is  

a must for the purpose of ultimate substation or lightning protected building safety. 

 
 

4. CONCLUSION 
As a conclusion the shorter the lightning impulse front time, the higher the value of GPR, touch voltage 

and step voltage. On the other hand, the higher the values of soil resistivity, the higher are the GPR, touch voltage 

and step voltage. Thus, when installing the grounding grid, the soil should have not only a very low resistivity but 

also a more or less constant or lower values throughout the substation or grounding grid life. The grid conductor 

material should have a very low resistivity value, and in this study, it was found that pure copper gives the best grid 

performance. Other parameters may also influence the grid performance. It is well known that soil behaves 

differently when subjected to large transient currents such as having ionization phenomenon within the soil grains. 

The effects of soil ionization purpose not however modelled. This can be the subject of future studies. 
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