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 This paper analyzed the new compact design and negative refractive index 
(NRI) metamaterial for wideband applications. The proposed metamaterial 

exhibits NRI and wideband characteristics of the x-axis wave propagation.  
It displayed the NRI property at the frequency of 1.54 GHz and wideband 
from 1.26 GHz to 7.08 GHz frequency (L, S, and C band). Moreover,  
the response of the 1×2 horizontal and 2×1 vertical array structure showed 
the wideband frequency in the 7.17 GHz to 13.62 GHz and 1.46 GHz to 9.53 
GHz, respectively. Electromagnetic simulation software called CST has been 
used to design the metamaterial unit cell. The metamaterial has been 
displayed the multi-band characteristics such as L, S, C, X and Ku bands with 
negative index material properties. 
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1. INTRODUCTION  

Metamaterial is an engineered material structure that has some unique electromagnetic properties 

that not found in the nature. Thus, metamaterials are artificially constructed that called left-handed 

metamaterials. They can exhibit the negative permittivity (ɛ ˂ 0), negative permeability (µ ˂ 0) and  

the negative refractive index, Snell’s law, etc. In 1968, Russian scientist Victor Veselago first time explained 

about this material property. It had some different properties compared with the conventional materials [1]. 

Almost 30 years later, in 2000 Smith et al. [2] practically demonstrated a composite material with negative 

metamaterial characteristics. These unique characteristic materials can be used in more important fields, 

namely sensor design, EM absorption, SAR reduction, filter design, antenna design, and invisibility cloaking 

operation. A metamaterial is called double-negative (DNG) material when the effective permittivity (ɛ) and 
permeability (µ) are negative. If any of them of permittivity and permeability is negative, then the material 

called single negative (SNG) material. Some unit cell structure with metamaterial properties and double band 

electric atom with double split ring resonators are explained in literature [3-5]. There are some metamaterials 

structures have been proposed such as, Malik et al. with 25 × 25 mm2 rectangular “U-shape” metamaterial 

that can display double negative properties for the various array structures [6].  

Hossain et al. suggested a meta-atom, the dimention of the meta-atom was 12×12×1.6 mm3 with 

EMR (10.55) [7]. Zhou et al. designed a “double Z-Shape” metamaterial structure with double negative 

properties and the dimension of 8.5 × 8.5 mm2 whereas the EMR was 4.80 [8]. Islam et al. suggested an  

“H shape” metamaterial structure with the size of 30×30 mm2. This structure was shown the NRI properties 

at 0.5 GHz and 0.3 GHz frequency with small EMR (3.65) [9]. Rizwan et al. designed an “F-shape” 

metamaterial structure with NRI that were applicable of K and Ku bands [10]. Zhou et al. designed an  
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“S-shape” chiral metamaterial. The dimension of the metamaterial was 15 × 15 mm2 with X and Ku band 

application [11]. Hossain et al. proposed a modified multiple hexagonal unit cell structure. The dimension of 

the structure was 11×10×1.6 mm3 and the EMR was 13.84 [12]. Hossain et al. designed a “G-Shape” a new 

wideband double negative metamaterial and the dimension was 12 × 12 × 1.6 mm3 whereas the EMR was 

11.90 [13]. Hasan et al. proposed a “Modified Z-shape” double-negative miniaturized metamaterial for 

wideband operation. The dimension of the structure was 10×10×1.6 mm3 and the EMR was 3.98 [14]. 
Abhishek et al. designed dual band metamaterial unit-cell structure with dimension was 7.5 × 7.5 × 0.787 

mm3 and the EMR was 7.14 [15]. Hossian et al. proposed a “double C-shape” metamaterial structure 
dimension of 12×12×1.6 mm3 and the EMR was 9.62 [16]. Abbott et al. designed a compact capacitive 

loading design to improve the effective medium ratio [17]. In 2010 Fabio Urbani et al. proposed a  

“diamond-shaped” metamaterial unit-cell for X-band only and the EMR was too small 1.2 [18].  

Karamanos et al. designed a compact double negative metamaterial unit cell with EMR 6.9 [19].  

Nabila Abdul Jaffar et al. designed a metamaterial-base antenna for non-invasive hyperthermia cancer 

treatment [20]. Bashar et al. proposed a dual band modified split square resonator metamateraial structure 

[21]. Adamu et al. designed a metamaterial antenna employing SSR and CSRR for WLAN application [22]. 

Hossain et al. designed a “combination of double T- and double U-shaped split ring resonators with square 

split ring resonator” metamaterial in the microwave range, whereas the size of the published design structure 

was 10.5 × 12 × 1.6 mm3 that was large compared to proposed design structure [23].  

In this paper, the design of “double Ш- shaped” with a split square resonator metamaterial unit cell 

structure exhibits the multi-band characteristics of L, S, C, X and Ku bands with wideband frequency of 1.26 
GHz to 7.08 GHz (5.62 GHz), 7.17 GHz to 13.62 GHz (6.45 GHz), 1.46 GHz to 9.53 GHz (8.07 GHz) for 

the X-axis wave propagation. The different types of array structure such as 1×2 horizontal, and 2×1 vertical 

were described in this paper. The proposed compact design of metamaterial unit cell also displayed  

the negative refractive index properties at 1.53 GHz, 1.68 GHz, 6.16 GHz, 6.045 GHz resonance frequencies. 

In this paper, the size of the suggested unit cell structure is 9.6 × 9.6 × 1.6 mm3, which is more compact than 

the reference metamaterial structure with the terms of EMR (20.29). Electromagnetic simulation software 

called CST has been used to design the metamaterial unit cell structure for multi-band application. 

 

 

2. DESIGN AND METHODOLOGY 

The NRI metamaterial unit cell is a two-layer copper substance with “double Ш-shape” and split 
square resonator printed on the FR4 lossy material substrate. The dimension of the substrate is 9.6 × 9.6 × 1.6 

mm3 and thickness of 0.035 mm with permittivity, ɛ = 4.3, permeability, µ = 1, and loss tangent, ẟ = 0.025. 

The metamaterial unit cell’s parameters are L = 9 mm, W = 9 mm, W1 = 0.5 mm, W2= 0.5 mm, W3= 0.5 mm, 

L1 =5.8 mm, L2 = 7 mm g1 = 0.4 mm, g2 = 0.4 mm, g3 = 0.6 mm, g4 = 0.5 mm. 

 In this paper, electromagnetic simulation software called CST has been utilized to obtain the NRI 

and wideband properties of the metamaterial unit cell structure. The structure is placed in between  

the positive and negative waveguide ports along the X-axis wave propagation to execute the NRI and  

the wideband operation where Y-axis and Z-axis represent perfect electric conductor (PEC) and perfect 

magnetic conductor (PMC) respectively for boundaries. To simulate S-parameters, a frequency domain 

solver is used where 1001 sample frequencies have been taken. The simulation was performed between  

the frequency ranges of 1GHz to 15GHz. The proposed metamaterial unit cell’s formation diagram is shown 
in Figure 1. 

 

 

 
(a) 

 
(b) 

 

Figure 1. The sketch diagram of the proposed unit cell structure, (a) Front side, (b) Back side 
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3. RESULTS AND DISCUSSION  

Generally, Direct-Retrieval method [24], Direct Refractive Index method and the Nicolson-Rose-Weir 

(NRW) method are used to extract the effective parameters [25]. In this case, both (real and imaginary) values of 

permittivity (ɛ), permeability (µ) and refractive index (n) are determined from the simulated complex S-parameters 

such as reflection coefficient (S11) and transmission coefficient (S21). This paper analyzes the X-axis wave 

propagation and the different types of array structure such as 1×2 horizontal and 2×1 vertical array respectively. 

 

3.1.  Analysis of EM wave propagation for the X-axis 

The metamaterial unit cell structure is between the positive and negative waveguide ports along the X-axis 

wave propagation where Y-axis and Z-axis represent perfect electric conductor (PEC) and perfect magnetic conductor 
(PMC) respectively for boundaries. Figure 2(a) showed the simulated configuration and 2(b) showed the magnitude 

of S-parameters with X-axis wave propagation. The reflection coefficient (S11) displays the maximum resonance at 

the 1.3 GHz and 7.13 GHz frequencies. Since the transmission coefficient (S21), the maximum resonances at 1.54 

GHz, 8.46 GHz, 12.33 GHz frequencies. Whereas the structure depicts the operation bands are L, S, C and X bands. 

Figure 3(a) and (b) display the effective permittivity and effective permeability with real and imaginary curves for X-

axis wave propagation. Figure 3(a) shows the real value of negative permittivity from 1.38 GHz to 6.99 GHz, and 

12.95 GHz to 14.98 GHz. The real value of negative permeability from 1.34 GHz to 1.46 GHz, 6.29 GHz to 7.13 

GHz and 7.67 GHz to 13.94 GHz are shown in the Figure 3(b). Figure 3(c) exhibits the negative refractive index with 

both curves (real and imaginary) for the X-axis wave propagation. The real values of negative refractive index are 

indicated from 1.37 GHz to 6.99 GHz and 12.56 GHz to 14.04 GHz. The metamaterial unit cell exhibits the NRI 

property at 1.53 GHz and the wideband at the frequencies of 1.26 GHz to 7.08 GHz (5.62 GHz bandwidth). 
 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Simulation setup, (b) Numerical S-parameters 
 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 3. Real and imaginary curve of (a) Effective permittivity, (b) Effective permeability,  

(c) Effective refractive index for the X-axis wave propagation 
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3.2.  Analysis of 1×2 horizontal array of the metamaterial unit cell structure 

Figure 4(a) shows simulation setup for 1×2 horizontal array which is formed in the same substrate as 

basic unit cell structure and Figure 4(b) displays the numerical S-parameters in 1×2 horizontal array 

structure. The reflection coefficient (S11) displays the maximum resonance frequencies at 1.13 GHz and  

9.42 GHz. The maximum peak of the resonance frequencies are 1.53 GHz, 6.07 GHz, and 10.86 GHz in  

the transmission coefficient (S21). The applicable bands are L, S, C, X and Ku bands. Figure 5(a) and 5(b) 

represents the effective permittivity and effective permeability with real and imaginary curves for  

1×2 horizontal array structure. In the Figure 5(a), the real values of negative permittivity from 0.84 GHz to 
6.51 GHz, 7.17 GHz to 7.35 GHz and 13.41 GHz to 15 GHz are illustrated. Figure 5(b) shows the real value 

of the negative permeability of 1.07 GHz to 1.32 GHz, 6.95 GHz to 14.1 GHz and Figure 5(c) exhibits  

the negative refractive index with the real and imaginary curves for the 1×2 horizontal array. The real values 

of the relative negative refractive index of 0.96 GHz to 1.3 GHz, 1.53 GHz to 5.01 GHz, 5.91 GHz to  

6.29 GHz, 6.98 GHz to 8.27 GHz, 9.36 GHz to 9.62 GHz, 10.59 GHz to 11.37 GHz and 13.26 GHz to  

14.27 GHz. The structure of the 1×2 horizontal array exhibits the NRI resonant at 6.05 GHz and  

the wideband of 7.17 GHz to 13.62 GHz (6.45 GHz bandwidth). 

 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Simulation setup for 1×2 horizontal array,  

(b) Numerical S-parameters in 1×2 horizontal array structure 

 

 

 
(a) 

 
(b) 

 

 

 
(c) 

 

Figure 5. Real and imaginary curve of (a) Effective permittivity, (b) Effective permeability, 

(c) Effective refractive index for the 1×2 horizontal array 
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3.3.  Analysis of 2×1 vertical array of the metamaterial unit cell structure 

Figure 6(a) indicates the simulation arrangement for 2×1 vertical array which is formed in the same 

substrate. Figure 6(b) shows the numerical S-parameters in the 2×1 vertical array structure. The reflection 

coefficient (S11) displays the maximum deep of the resonance at 1.33 GHz and 9.49 GHz. The maximum 

deep of the resonance frequencies at 1.69 GHz, 7.56 GHz, and 12.09 GHz in the transmission coefficient 

(S21). However, the represented bands are L, S, C, X and Ku bands. Figure 7(a) and 7(b) demonstrates  

the effective permittivity and effective permeability with real and imaginary curves. The real values of 

negative permittivity from 1.37 GHz to 6.98 GHz, 12.96 GHz to 15 GHz are shown in Figure 7(a).  

Figure 7(b) exhibits the real values of the negative permeability of 1.49 GHz to 1.58 GHz, 6.45 GHz to  

6.95 GHz and 7.26 GHz to 13.95 GHz. Figure 7(c) represents the negative refractive index with both curves 
(real and imaginary) for the 2×1 vertical array. The real values of the relative negative refractive index of 

1.39 GHz to 2.88 GHz, 3.05 GHz to 6.99 GHz, 12.47 GHz to 14.01 GHz. The structure of the 2×1 vertical 

array exhibits the NRI property at 1.68 GHz and the wideband of 1.46 GHz to 9.53 GHz (8.07 GHz 

bandwidth). Comparison among previous configurations and proposed configurations as shown in Table 1. 

 

 

 
(a) 

 
(b) 

 

Figure 6. (a) Simulation setup, (b) Numerical S-parameters curve of 2×1 horizontal array structure 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 7. Real and imaginary curve of (a) Effective permittivity, (b) Effective permeability,  

(c) Effective refractive index for the 2×1 vertical array 
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Table 1. Comparison among previous configurations and proposed configurations 

Author’s name 
Dimension 

(mm
3
) 

Applicable 

band 
Unit-cell shape 

Metamaterial 

type 
EMR Year 

Islam et al. [9] 30×30×1.6 (2-15) GHz H -shape LHM 3.65 2014 

Hossain et al. [13] 12×12×1.6 (0.5-6) GHz G-shape NIM 11.90 2015 

Zhou et al. [8] 8.5 × 8.5 (6-12) GHz Double Z shape LHM 4.80 2015 

Hasan et al. [14] 10×10×1.6 (2-14) GHz Modified Z SNM 3.98 2016 

Hossain et al. [7] 12×12×1.6 (1-15) GHz Double C NIM 10.55 2017 

Hossain et al. [12] 11×10×1.6 (1-18) GHz Modified Hexagonal LHM 13.84 2018 

Proposed unit cell 9.6×9.6×1.6 (1-15) GHz Double Ш NIM 20.29 --- 

 

 

4. CONCLUSION  

The proposed double Ш-Shaped compact metamaterial unit cell structure designed on FR4 substrate 

material for NRI and wideband operation. It showed the NRI property at 1.54 GHz resonance frequency and 

5.62 GHz bandwidth for X- axis wave propagation. Moreover, the analysis on 1×2 horizontal and  

2×1 vertical array structure respectively exhibited the wideband of 6.45 GHz (7.17 GHz to 13.62 GHz) and 

8.07 GHz (1.46 GHz to 9.53 GHz) that indicated L, S, C, X, and Ku bands. This metamaterial unit cell 

structure displayed the higher EMR (20.29) compare to the mentioned metamaterial unit cell design structure. 

Electromagnetic simulation software called CST was been utilized to analysis the metamaterial unit cell 
structure. The proposed metamaterial is applicable for satellite communications, GPS, radar, long distance 

radio telecommunications, military telemetry, mobile phones (GSM). 
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