
TELKOMNIKA, Vol. 11, No. 4, April 2013, pp. 1896~1901
ISSN: 2302-4046
  1896

Received January 10, 2013; Revised February 10, 2013; Accepted February 26, 2013

An Improved-hash Based Multi Dimensional Distributed
Index Mechanism

 Haiwen Han*1, 2, Deyu Qi1, Weiping Zheng3

1Research Institute of Computer Systems, South China University of Technology, Guangzhou, China
2College of economic and management, South China Normal University, Guangzhou, 510631, China

3College of computer science and Engineer, South China Normal University,510631 Guangzhou, China
*Corresponding author, e-mail: hanhw@scnu.edu.cn

Abstract
Data partition and the accordingly index technologies which could result in uniform data

distribution and fast data finding are critical in high parallelism for shared nothing architecture to minimize
the transaction processing time. An improved-hash based multi dimensional index mechanism is present in
this paper to achieve high parallelism performance for distributed data-parallel computation in shared
nothing architecture. After partitioning and storing data using improved-hash function based on partitioning
column, the multi dimensional indexes based on multi columns and the corresponding data lookup
procedure are constructed. Afterwards, the space complexity and time complexity are analyzed.

Keywords: data partition, hash index, shared-nothing architecture, distributed index

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

In shared nothing architecture shown as Figure 1, the primary processing node is
responsible for receiving and passing the query transaction to processing node(s) to finish the
transaction in parallel using their own independent components including processing unit,
memory unit and storage unit [1]. So, this shared-nothing architecture effectively raises up
parallelism and scalability performance for distributed data-parallel computation. Being used to
divide large table into smaller and manageable pieces, data partitioning and the accordingly
index technologies play important role in the implementation of distributed storage and parallel
processing in this architecture. The traditional range data partitioning approach dividing table
rows to partitions based on value range of partitioning column is easy to perform. But the
accordingly index does not adapt to the real-time application because of the slow data lookup
speed and the non-uniformly data distribution [2]. The hash data partitioning approach could
fasten the data lookup speed by mapping partitioning column value to short hashed key and
constructing hash index to achieve quit hash search. But still this approach and index could not
ensure average data distribution [3]. And, both the range data partitioning approach and the
hash data partitioning approach focus only on one table column doesn’t provide a multi
dimensional index mechanism.

Primary

processing node

Processing

node1

Storage unit

Memory

unit

Processing

node2

Memory

unit

Communication unit

Processing unit

Storage unit

…
Processing

noden

Memory

unit

Communication unit

Processing unit

Storage unit

Communication unit

Processing unit

Figure 1. Shared-nothing Architecture

TELKOMNIKA ISSN: 2302-4046 

An Improved-hash based Multi Dimensional Distributed Index Mecahnism (Haiwen Han)

1897

This paper brings up an improved-hash based multi dimensional distributed index
mechanism to achieve the uniformly data distribution and fast data lookup speed for data
parallel computation. This mechanism implements a uniformly data storage among multiple
processing nodes by using hash function to divide massive data into hash buckets and using
bucket adjustment algorithm to assign buckets to different processing nodes. Accordingly,
distributed index composed of one primary hash index in primary processing node based on
partitioning column and a set of ordered index in each processing node based on other
column(s) is constructed. High performance in parallelism and transaction processing speed
would be achieved by this partitioning column based uniformly data distribution and the
accordingly multi dimensional distributed index mechanism.

2. The Index Mechanism

Assuming that there are N processing nodes, relation R, partitioning column R.x with
value range V.

2.1. Data Partition

Being decided by user need, the partitioning column is composed of one or more

attributes in relation R. A hash function  )(,1,,1,0: NMMVH   is given to partition
relations R into M buckets based on the partitioning column R.x. T(R,R.x,I) is a data bucket
numbered I. For any tuple r in R, T(R,R.x,I)= H(r[R.x]).

A bucket assign function    110110  N，，，M，，F：  is given to assign the M
buckets to N processing nodes’ storage units. Accordingly, for any tuple r in R, F(H(r[R.x])) is
the processing node number of r.

2.2. Data Storage and the Accordingly Primary Hash Index

Assuming that there are N processing nodes, relation R, partitioning column R.x with
value range V.

It is important to get uniform data distribution by hash function. But even a good hash
function (like mention [4]) couldn’t achieve totally uniform data distribution among buckets and
processing nodes. So it is needed to use bucket average algorithm to adjust the bucket’s
storage location.

Without loss of generality, assuming that M=256, N=32, F(x)=x mod N, then as Figure 2
shown, the p0 node would be assigned 8 buckets numbered 0,32,64,96,128,164,196,224 and
sorted by their tuples number. And other processing nodes also have buckets of tuples. Bucket

average algorithm would firstly visit every node to sort buckets into a queue 25510 ,, iii TTT 
 by

their tuples number. And then, data exchanges between bucket pairs 0iT
 and 255iT

, 1iT
and

254iT
…, and so on are implemented to uniform the tuples number among the processing nodes.

At the same time, as Figure 3 shown, a primary hash index for 256 buckets and 32 nodes is
accordingly constructed in primary processing node.

0 16
1 29
2 31
3 2
.
.
.

.

.

.
254 23
255 18

32 3
0 17

64 29
.
.
.

.

.

.
128 65

Figure 3. Primary hash index Figure 2. The bucket queue

Bucket number Tuples Bucket number Node

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 1896 – 1901

1898

Rather than a absolutely uniform data distribution, a nearly uniform distribution do better
in reducing the algorithm’s complexity and minimizing the execution time for application. So, a
threshold ε is given to measure buckets difference and accordingly the bucket pair exchange
data only if their difference is more thanε(buckets’ tuples number is admitted as equal if their
difference is less than ε). And the primary index would also change accordingly.

The more uniform data distribution among buckets the hash function makes, the less
data exchange occurs between buckets pair. A.Ostlin [5] provide a hash function which is good
at making uniform data distribution among buckets.

2.3. The Distributed Ordered Indexes

The data partition and the data storage with the accordingly primary hash index
discussed before are all based on the partitioning column, without loss of generality, named A.
The indexes based on other non-partitioning column(s) are needed for the transactions about
those non-partitioning column(s). Assuming that the non-partitioning columns named

k，B，，BB 21 , and there are tuples
 ipiii rrrS ,, 21

 in processing node numbered i, k

ordered indexes based on k，B，，BB 21 separately are constructed in this node.
Without loss of generality, by the ordered index based on B1 shown as Figure 3, the

tuples iprrr ,, 1211 are sorted on column B1’s value pKKK ,, 21 . Then the ordered index is
composed of two attributes including column B1 and the corresponding pointer of tuple r’s
location in R.

Figure 4. The Ordered Index based on B1 Column in Node I

3. The Execution Framework

In this section, the execution framework under this distributed index mechanism
including the design of partition scheme and the accordingly method for data query are
presented.

3.1. The Design of Partition Scheme

The table, index and index-organized are further broken down into paragraphs, through
selecting the appropriate scheme. An appropriate partition scheme [6, 7] designed specially for
application would make good use of the distributed index mechanism to accurately manage and

The storage of Si in node I

columnB1 Pointer columnA columnB1 columnB2 … columnBk . . .

K1 … Kp-1 … … … …

K2 … K2 … … … …

K3 … Kp … … … …

K4 … K3 … … … …

K5 … Kp-3 … … … …

.

.

.

 .

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

Kp-4 … Kp-2 … … … …

Kp-3 … K1 … … … …

Kp-2 … Kp-4 … … … …

Kp-1 … K5 … … … …

Kp … K4 … … … …

One of the ordered index

TELKOMNIKA ISSN: 2302-4046 

An Improved-hash based Multi Dimensional Distributed Index Mecahnism (Haiwen Han)

1899

access database and increase the performance, availability and manageability of the application
program. A wide variety of partition scheme is provided completely transparent for users to meet
the needs of their variety of requirements. Therefore, partition can be applied to almost any
application.

Considering the application of the clear time frame database [8], for example, month,
quarter and year, the time field should be used as the scope partition and local partition index of
partition column. The partition index is used to complete the data fast finding and improve the
system responsiveness, for the majority partition column finding.

For the database applications of undefined time marked and no-listed field, it can be
achieved by the hash partition [9]. Generally, the field with sequence number attribute is defined
as partition column. Through the hash algorithm, the data is uniformly distributed in different I/O
space of the table to improve the performance.

A trade management system [10] covers transaction processing and query operation
has the large amount of data concurrent characteristics. So it is suitable for the partition
application. The program objectives and principles of the partition scheme are to maintain and
enhance the performance of day-to-day transactions [11]. As a typical transaction processing
system, a large number of search jobs is operated by major elements, for example, timing and
code. Therefore, it provides a favorable basis for partition and provide high performance by
positioning the search operation to smaller units generated by partition technology.

3.2. Data Query Under the Distributed Index Mechanism

 Under the index mechanism discussed, the primary processing node would analyze the
query transaction and take next step according to the related columns.

1) If the query transaction relate about partitioning column A, the bucket
number(s) of the corresponding tuple(s) would be counted out by hash function using column
A’s value in the primary processing node. Afterwards, the node(s) number(s) where those
bucket(s) stored in would be counted out later by using bucket assign function and searching
primary index in primary processing node. And then the query transaction would be passed to
this(these) node(s) to be finished in parallel and the outcome data would be sent back to
primary node at last.

2) If the query transaction relate about non-partitioning column(s) B1,B2,…,Bk, the
primary processing node would firstly pass this query transaction to each processing node in
parallel. By searching ordered index in each processing node using value of column Bi,
processing node would get the location of tuple(s) from ordered index and get the tuple(s) from
the Si storage to finish the query transaction. Outcome data would also be sent to the primary
processing node at last.

It takes traditional multi dimensional index mechanism twice accesses to processing
node to finish the query transaction on non-partitioning column(s). The first access to
processing node is to get the node number(s) by searching index(s) in processing node(s). The
second access is to pass the transaction to those node(s) found out in the first access. Being
superior to the traditional multi dimensional index mechanism, the multi dimensional distributed
index mechanism discussed in this paper accesses the processing node only once to pass the
transaction to each processing node directly.

4. The Analysis and the Experiment

It is assuming that there are C tuples in relation R being partitioned in M buckets and
stored in N processing nodes. It is also assuming that k+1 columns (A,B1,…Bk) in relation r are
admitted to be used in query transaction. Then the analysis for space complexity and time
complexity are shown as 4.1 and 4.2.

4.1. Analysis for Space Complexity

The buckets average tuples number is
MCVm /

. For primary processing node, the

memory size assigned to primary index is
MVsearch  . For processing node, the average

memory size assigned to ordered index is

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 1896 – 1901

1900

NCkNMMCkNMVkV mindex /)1()/)(/)(1()/()1( . In addition, the storage

size assigned to tuples in processing node is NCNMVV mr /)/( .
Accordingly, the C and k values are determined by relation size and user transaction

requirement, while the M and N values could be determined artificially. The M value determined
by the hash function could not be too large because little data in buckets owing to much buckets

would result in more data exchanges between buckets and the large searchV
 value which means

large primary index in primary processing node to spend much search time for primary index.
The N value determined by the network designer should be as large as possible because that
the more processing nodes would result in the shorter ordered index in processing node for
spending little time to search ordered index.

4.2. Analysis for Time Complexity

The time complexity is closely related to the space complexity. Assuming that the

probability of occurrence for columns kBBBA ,,, 21 are
)1(,,, 10210  kk PPPPPPP 

.
Assuming that the average searching time for primary index is T0 and the average searching
time for ordered index is T1. Then the average searching time for query transaction is

1001210012211100)(TTPTPPPTPTPTPTP）T（TPT kk  
 .

The value of T0 is proportional to the value of M. Being inversely proportional to the

value of N, the value of 1T also is proportional to the values of Q and C. So, without loss of

generality, it is assuming that
MT 0 , NQCT /1  . Then,

NQCMPNQCMPT /2/ 00 
. It means that T would reach the minimum value when

0// PQCNM  .

5. Conclusion
The distributed index mechanism present in this paper brings about high performance

for user transaction by being characterized by： 1) exchanging data between buckets to get a
uniform data distribution storage among multiple processing nodes. 2) resulting in effective
parallelism with the nearly uniform consumption of time and space in each processing node. 3)
satisfying multi types of users requirements by constructing distributed indexes based on
multiple columns. 4) reducing communication workload by only one time access to processing
node for transactions both on partitioning column(s) and non-partitioning columns. To improve
this index mechanism only satisfying the application scene of static data storage, the next step
in research is to find out a solution of application scene of dynamic data storage.

Aknowledgement

Research on Oil Electric Engine Intelligent Scheduling System under mobile base
station power environment monitoring platform (No. 2011B090400622)

References
[1] Y Xu, P Kostamaa, X Zhou, et al. Handling data skew inparallel joins in shared-nothing systems. Proc

of ACM SIGMOD’08. Vancouver. 2008: 1043-1052.
[2] Thorsten Schutt, Florian Schintke, Alexander Reinefeld. Range queries on structured overlay

networks. Computer Communications . 2008; 31(2): 280-291.
[3] EA Fox, Qi Fan Chen, et al. Order preserving minimal perfect hash functions and information retrieval.

Proc of 13th Int’l Conference on R&D in Information Retrieval. San Diego. 1990: 279-311.
[4] Zhang Chun-Xiang, SUN Li-quan. Multi-dimensional-data partition based on improved-hash method.

Journal harbin Univ. Sci &Tech. 2001; 6(1): 24-27.
[5] Ostlin, R Pagh. Uniform hashing in constant time and linear space. Proc of 35th Annual ACM

Symposium on Theory of Computation. 2003: 622-628.

TELKOMNIKA ISSN: 2302-4046 

An Improved-hash based Multi Dimensional Distributed Index Mecahnism (Haiwen Han)

1901

[6] Xiangyu Zhang, Jing Ai, et al. An Efficient Multi-Dimensional Index for Cloud Data Management. Proc
of CloudDB’09. 2009: 17-24.

[7] Meng Liu, Fang Liu, Ming-hao Tian. Data Rapid Finding Scheme Design. Proc of 2011 International
Conference on Mechatronic Science, Electrical Engineering and Computer. 2011: 2488-2490.

[8] Qiansheng Zhang, Fuchun Liu, et al. Index Selection Preference and Weighting for Uncertain Network
Sentiment Emergency. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(1) .

[9] Balexey Lastoyetsky, Ravi Reddy. Distributed Data Partitioning for Heterogeneous Processors Based
on Partial Estimation of Theri Functional Performance Models. Euro-Par 2009 Workshops. Delft. 2010:
91-101.

[10] Ward J, Peppard J. Strategic planning for Information Systems. West Susse: John Willey & Sons
Ltd. 2007.

[11] Mardiyono Mardiyono, Reni Suryanita, et al. Intelligent Monitoring System on Prediction of Building
Damage Index using Artificial Neural Network. TELKOMNIKA Indonesian Journal of Electrical
Engineering. 2012; 10(1): 155-164 .

