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Abstract 
Aiming at the stochastic vehicle routing problems with simultaneous pickups and deliveries, a 

novel discrete differential evolution algorithm is proposed for routes optimization. The algorithm can 
directly be used for the discrete domain by special design. Computational simulations and comparisons 
based on two kinds of problems of different sizes of SVRPSPD are provided. Results demonstrate that the 
proposed algorithm obtains better results than the basic differential evolution algorithm and the existing 
genetic algorithm. 
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1. Introduction 

The SVRPSPD is a variant of the classical VRP which is often encountered in practice. 
After VRPSPD is introduced into the literature by Min [1], some scholars contribute on the 
mathematical formulation and the solution methods. In problems, such as capacity constraint 
and time windows being taken into account. On the other hand, because VRPSPD has been 
proved to be NP-hard, the solution methods mostly focus on the heuristics and meta-heuristics. 
With the development of computer technology, a few heuristics and meta-heuristics have been 
used to solve VRPSPD [2, 3, 4].  

To date, most studies on VRPSPD focus on the level of deterministic model. However, 
in many real-world applications, one or more parameters of VRPSPD tend to be stochastic. 
Thus, it is necessary to study the model and the algorithm of stochastic VRPSPD. 

The differential evolution (DE) algorithm is one of the latest intelligent optimization 
algorithms proposed by Storn and Price [5]. As a population-based evolutionary algorithm, DE is 
originally designed for continuous optimization problems which use simple mutation and 
crossover operators to generate new candidate solutions, and applies one-to-one competition 
strategy to select the new individuals. Due to its simplicity, effectiveness and robustness, DE 
has been successfully applied in solving continuous problems in a variety of fields. However, 
Owing to continuous nature of DE, the research on DE for combinatorial optimization is very 
limited. So, it is urgent to propose a discrete differential evolution algorithm for specific 
problems.  

Recently, some scholars have done some researches on DE for combinatorial 
optimization problems [6, 7, 8]. Few studies have been done on VRP with DE.  

In view of above analysis, this paper focuses on designing a novel discrete differential 
evolution algorithm (DDE). In DDE, individuals are represented as discrete client ordinal, and 
new mutation operator is defined based on the definition of new algebraic structures. 
Consequently, DDE can be directly applied to the combinatorial optimization problem where 
chromosomes are natural numbers. 

The remaining paper is organized as follows. In section 2 the stochastic programming 
model of SVRPSPD is presented. The structure of DE is given in section 3. In section 4 DDE is 
introduced comprehensively. And in section 5, the computational results over different sizes of 
SVRPSPD are discussed. Finally, conclusions and some suggestions for future work are 
summarized. 
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2. Problem Formulation and Preliminaries 
SVRPSPD discussed in this paper can be described as follows: Given a single depot, a 

set of clients where each client simultaneously has both a delivery demand and a pick-up 
demand and must be served once by only one vehicle, a homogeneous fleet of vehicles where 
each vehicle, which delivers the goods from the depot to clients as well as picks up loads back 
to the depot, has the same capacity and maximum travel time, and must return to the depot if it 
can not satisfy the demands of clients or if the maximum travel time exceeds.  

In detail, we suppose that: n denotes the number of the clients; m denotes the 
maximum available number of vehicle can be used of the depot(0); C denotes the vehicle 
capacity; the delivery demand subjects to the normal distribution, that is id  ),( 2

iiN  ; the 

pick-up demand is determinate, assuming ii rp  . We also assume the travel time subjects to 

the normal distribution, that is tijk  ),( 2
ijijij vdN  , suppose that the service time for every client 

is proportional to delivery demand of it, that is ii dT  . B denotes the maximum travel time. The 

constraints of capacity and maximum travel time could be unsubstantiated, but the probability of 
constraints satisfaction is more than the given confidence level. Meanwhile, denotes the 
percentages allowed for overload; )1(  and )1(  denote the confidence level. 

The problem formulation is as follows: 
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The objective function (1) minimizes the total distance. Constraints (2) ensure that every 
client is served by exactly one vehicle. Constraints (3-4) ensure that maximum available number 
of vehicle is not exceeded. Constraints (5) guarantee that a vehicle exits the client it enters. 
Constraints (6-7) represent that a small number of overload is allowable, but the probability of 
overload is less than . Constraints (8) handle maximum allowable travel time, which allow a 
certain amount of overtime, but the probability of overtime is less than  . Constraints (9) are 

sub-tour elimination constraints. 
Note that when 0 fixed in constraints (6-7), this model is transformed into the model 

of SVRP subject to the same constraints. When n fixed in constraints (6-7), this model is 
transformed into the model of SVRP with only pickups. When 0 fixed and 1m , that is the 
depot have only one vehicle, the model is transformed into the model of TSP. 

 
 

3. Differential Evolution Algorithm 
DE is an improved version of GA which belongs to the evolutionary optimization 

method, where chromosomes are floating-point numbers. The principle for DE is described 
briefly as follows. 

 
(1) Population Initialization  

DE is considered NP d-dimensional vectors as the initial population to search the best 
solution. We can denote the group as follows:         

},,1,0,,,2,1),,,,(|{ max,,2,1,, GGNPixxxXX GdiGiGiGiGi   , where Gmax denotes the maximum 

evolution generation.  
Clearly, NPiX i ,,2,1,0,  denote the initial population. Generally, the initial population 

can be chosen randomly from the range of variables. 
 

(2) Mutation Operator  
The purpose of mutation is to generate the mutant vector in order to enhance 

perturbation to the target vector to avoid premature convergence to a non-global local optimum. 
For each target vector NPiX Gi ,,2,1,,  , the mutant vector can be created as: 

)( ,3,2,11, GrGrGrGi XXFXV  , where the indexes r1, r2, r3 represent the random and mutually 

different integers generated within [1,NP] and also different from i. F is a scaling factor, which is 
a real constant within [0,2]. 

 
(3) Crossover Operator  

The purpose of crossover is to increase the potential diversity of the evolution group. 
Based on the mutant vector, the trial vector ),,,( 1,1,21,11,   GdiGiGiGi uuuU   can be constructed 

as follows: 
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In formula (10), rand(0,1) is a random value within [0,1]; rand(i) is a randomly chosen 

index from },,2,1{ d . G is the number of current generation, and CR is the crossover 

probability within [0,1]. 
 

(4) Selection Operator  
Based on the estimation of the group, the selection operator executes according to the 

fitness value of the target vector and its corresponding trial vector. The population of the next 
generation is obtained by adopting the following greedy selection criterion: 
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It is obvious from the above description that the traditional DE algorithm is designed for 
the continuous optimization problems, not suitable for application to combinatorial optimization 
problems. 
 
 
4. Discrete Differential Evolution Algorithm 

This paper proposes a novel DDE for SVRP. The essential difference is mutation 
operator with DE. 
 
4.1. Representation and Fitness Function 

In this paper, we adopt the client-ordinal-based representation which has been widely 
used in the literature for VRP. The feasible routing can be decoded to the chromosome (i11, 
i12,..., i1s; 0, i21, i22,..., i2t;...; 0, im1, im2,..., imw) with the length n+m-1.  

In DE, the fitness function is used to evaluate the adaptability to environment of 
chromosome.First of all, we will deal with the constraints (6-8), let them transform into their 
equivalent representations. We can have the results that constraints (6-8) are equivalent to the 
following formula, respectively [9]: 

mknCzzpz ik

n

i
iik

i
i

n

i
iki ,,2,1 ;,,1,0 )1(

101

21   


 





，  (12) 

 

 

mknCzzpz ik

n

i
iik

i
i

n

i
iki ,,2,1 ;,,1,0 )1()1(

101

21   


 





，  (13) 

 

 

B  1
0 01

n

1

222

0 0

1  
  


ijij

n

i

n

j
ijk

n

i
iki

i
iikij

n

i

n

j
ijk vdxzzx ）（

    

(14) 

 
In this paper, we use formula ll zbzf ' as the fitness function, where fl is the fitness 

value of the chromosome l, b is a given constant, z' is the best distribution costs corresponding 
to the chromosome in initial population, zl is the distribution costs of the chromosome l. 
 
4.2. Mutation Operator 

In DDE, a simple mutation operator is designed in order to generate discrete values. 
Before designing the new mutation operator, first of all, we introduce two bitwise operators of 
the computer language to define the new algebraic structure on the set of vectors whose 
elements are natural numbers. We use Nd for the d-dimension vector set and define a binary 
operator from dd NN  to dN .  

Definition 1: Assuming dd NaaaA  ),,,( 21  , dd NbbbB  ),,,( 21  , and giving 

numerical constant )1,0(F , we define operators as follows:    
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,   
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where rand(0,1) is a random number within [0,1], j is a random natural number within (1,d). 

Based on the above definition, the mutation operator can be presented as follows: 
1,,1,0,,,2,1,&| max,3,2,11,  GGNPiXXFXV GrGrGrGi ）（  (15) 

In formula(15), GiX , is the target vector, GrX ,1 , GrX ,2  and GrX ,3 are vectors distinct and 

different of the target vector chosen randomly from the group. F is a mutant scale factor, 
belonging to the interval [0,1]. The above formula consists of two components and an example 
is given in Figure 1. 
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Figure 1. Mutation operator: (a): select the vectors Xr1, Xr2 and Xr3 randomly, then 
calculate Xd = 32 & rr XX ; (b): select uniform number rand (0,1) between (0,1) and random number 

j randomly, calculate dt XFX   for F=0.5; (c): calculate
tr XXV |1 . 

 
 

4.3. Crossover Operator and Selection Operator 
 In this paper, according to formula (10), the trial individuals are generated one by one. 

The selection is executed according to formula (11) that the population of the next generation is 
produced individually by using the greedy selection criterion. 
 
4.4. Revise Operator. 

We see that the feasible chromosome genes of VRP must be different with each other. 
As described in the previous, illegal individuals may be produced during the evolutionary 
process. So, an auxiliary operator based on integer order criterion (IOR) is applied to amend the 
infeasible chromosomes [10]. 
 
 
5. Computational Results and Analysis 

To validate the effectiveness of the proposed DDE algorithm, two kinds of problems of 
different sizes of SVRPSPD are selected, that is small-scale problem (30 clients), and medium-
sized problem (50 clients), which are solved by DDE, traditional DE and GA [3], respectively in 
the same conditions. The relative parameters of models and algorithms in the paper are listed in 
Table 1.  

 
 

Table 1.  The Relative Parameters by Models And Algorithms 
N K C NP Gmax CR F Pc Pm   r B ）（
30 8 600 100 200 0.3 0.5 0.855 0.055 0.1 1.8 0.4 30400 0.05 
50 15 600 100 200 0.3 0.5 0.855 0.055 0.1 1.8 0.4 30400 0.05 

 
 

All the algorithms in this paper are implemented with C programming language. For 
each instance, 10 independent replications are conducted to obtain statistics. The 
computational results are shown in Table 2, where SD denotes the standard deviation of the 
distance value, T denotes the computational time. 

 
 

Table 2.  Average Results of the DDE, DE and GA Algorithms 

N 
DDE DE GA 
Distance SD T(s) Distance SD T(s) Distance SD T(s) 

30 388.673 44.795 14 424.118 34.330 13.5 462.746 20.701 6.8 
50 964.637 95.072 38.7 1107.13 61.566 38.3 1163.115 48.487 18.5 

 
 

From Table 2, it follows that DDE can obtain the better results than DE and GA.  
Therefore, we can conclude that DDE outperforms DE and GA on the considered problem. But 
the DDE computational time is much longer. This happens because in the process of DDE, the 
illegal chromosomes are revised during each generation, and as the problem size increases, the 
number of amendments increases. 
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6. Conclusion 
The aim of this paper is to provide a more realistic modeling approach to VRP and a 

more applicable algorithm for solving it. Thus, firstly, this paper proposes a stochastic 
programming model for SVRPSPD with uncertain demand and travel time, and then presents a 
novel DDE for routing optimization. In DDE, a client-ordinal-based representation is applied, and 
novel mutation operator is developed for this representation. Furthermore, the performance of 
DDE is discussed by numerical experiments. Simulation results and comparisons demonstrate 
the superiority of the proposed DDE algorithm in terms of solution quality and effectiveness. 
Particularly, the new mutation operator designed for direct application to combinatorial 
optimization problems is satisfying. 
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