
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 19, No. 3, September 2020, pp. 1121~1130 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v19.i3.pp1121-1130      1121 

  

Journal homepage: http://ijeecs.iaescore.com 

Grid search of exponential smoothing method: a case study of 

Ho Chi Minh City load demand 

 

 

Tran Thanh Ngoc, Le Van Dai 
Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam  

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 4, 2020 

Revised Mar 15, 2020 

Accepted Mar 22, 2020 

 

 The exponential smoothing method is one of the widely used methods for 
load forecasting. The taxonomy of exponential smoothing method shows that 
its trend and seasonal component affect the results of exponential smoothing 

method. This paper proposed a framework for grid search with the optimal 
model of exponential smoothing method based on math formulas. The 
training process will specify the optimal models which satisfy requirement of 
minimum of akaike information criterion, accuracy scores of the root mean 
square error, mean absolute percentage error, and mean absolute error.  
The testing process will evaluate the accuracy scores between the optimal 
models and all other ones. The results indicated that the optimal models have 
accuracy scores near the minimum values. The load demand data collected in Ho 
Chi Minh City were used to verify the accuracy and reliability of the grid search 

framework. 
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1. INTRODUCTION  

Load demand forecasting is of great importance for electric power systems operation, transmission, 

distribution and retail of electricity. According to different horizons, load forecasting can be classified into 

three categories: short-term load forecasting (STLF), medium-term forecasting (MTLF) and long-term 
forecasting (LTLF). STLF is usually utilized from one hour to a week toward hourly, daily or weekly system 

energy, while MTLF is usually from a week to a year and LTLF is more than a year [1-6]. 

Among several techniques used for load forecasting such as Multiple Regression, Exponential 

Smoothing, Stochastic Time Series, Fuzzy Logic, Neural Networks and Knowledge-Based Expert Systems; 

exponential smoothing (ES) method has known as one of the most promising forecasting strategies due to its 

simplicity, robustness and accuracy [7-10]. The ES method assumes that the time series consist of three 

components: level, trend and seasonality. The trend component can include five types: none, additive, 

damped additive, multiplicative, or damped multiplicative; and the seasonality can include three types: none, 

additive, or multiplicative. Thus, the taxonomy of ES method consists of 15 different ES models. Many of 

them are well known, including simple exponential smoothing (trend: none, seasonality: none), Holt‟s linear 

model (trend: additive, seasonality: none), Additive Holt-Winters‟ model (trend: additive, seasonality: additive), 
multiplicative Holt-Winters‟ model (trend: additive, seasonality: multiplicative) [8, 11-13].  

Recently, there have been many studies devoted to clarifying advantages of ES method as well as 

applying it for load forecasting [14-26]. The main point that should be noticed here is that the researchers 

commonly used only one specific ES model of „Additive Holt-Winters‟ or „Multiplicative Holt-Winters‟ as a 

default type of ES method, while there could be other approaches that could exist and the utilization of which 

can give better results. In this regard, the present work aims to propose a framework for Grid search using  

the optimal model of ES method based on the math formulas of ES taxonomy. The optimal model will be 
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evaluated in the testing process based on accuracy scores such as the root mean square error (RMSE), mean 

absolute percentage error (MAPE), and mean absolute error (MAE). The load demand data of Ho Chi Minh 

City was used to analyze by splitting them into in many cases to consolidate the obtained results. 

 

 

2. TAXONOMY OF ES METHOD  

The ES method assumes that the time series consist of three underlying data components: level, 

trend, and seasonality. The trend of ES method can include one of five types of trend: none, additive, 
multiplicative, damped additive, and damped multiplicative. While the seasonality of ES method can include 

one of three types: none, additive, and multiplicative. By combining the trend and seasonal components, 15 

different ES models could be established as listed in Table 1 [8, 11-13]. Table 2 shows the math formulas for 

15 ES models based on Table 1. Each cell consists of smoothing equation for applying the method and the 

forecast equation. 

 

 

Table 1. A Taxonomy of ES method 
Trend Component Seasonal Component 

 N (None) A (Additive) M (Multiplicative) 

N (None) N,N N,A N,M 

A (Additive) A,N A,A A,M 

Ad (Additive damped) Ad,N Ad,A Ad,M 

M (Multiplicative) M,N M,A M,M 

Md (Multiplicative damped) Md,N Md,A Md,M 

 

 

Table 2. A Taxonomy of ES method: formulas 
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where lt, bt and st are the series level, the series trend and the series seasonal at time t, respectively; m is  

the seasonal period; α, β, γ and ϕ are smoothing parameters,        
        ; h is the step ahead 

forecasts; k is the integer part of (h-1)/m. 

 

 

3. GRID SEARCH FOR ES METHOD 

The first point that must be mentioned here is how to compare ES models. When a model is defined 

as one of the 15 ES models as listed in Table 2 above, the level smoothing coefficient α, the trend smoothing 

coefficient β, the seasonal smoothing coefficient γ and the damped trend coefficient ϕ can be specified by 

tools of some software as Python with stats models tool [27]. These tools will automatically tune and specify  

the optimal values for α, β, γ and ϕ. There is more important and interesting problems, that how to specify  

the optimal structure of ES method. There are other hyper-parameters that will not be tuned automatically, 
and must be specified: 
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a) The type of trend component: N, A, M 

b) The type of damped component: True, False 

c) The type of seasonal component: N, A, M 

d) The seasonal period m: 0; 4 (quarterly); 7 (weekly); 12 (monthly); 24 (hourly). Moreover, when using 

stats models tool in Python for ES method, we can specify the option for two other parameters: 

e) The Box-Cox option (Apply the Box-Cox transform for the data first): True, False 

f) The bias option (Remove bias from forecast values and fitted values by enforcing that the average 

residual is equal to zero): True, False 

Thus, the configuration parameter of ES method consists of the trend type (t), the damped type (d), 

the seasonal type (s), the seasonal period type (m), the Box-Cox transformer type (b), the remove bias (r) 
[13]. Next question is how to specify the optimal configuration of ES method for known data. The common 

method is to split the data into training data and testing data. The training process can specify the optimal 

model according the requirement of minimum error scores between the fitted values produced by the model 

and the training values. The test process can use testing data to evaluate reliability of the optimal model 

obtained from training process. There are many popular error scores for training process and testing process. 

In this paper, we will use the root mean square error (RMSE), mean absolute percent error (MAPE) and mean 

absolute error (MAE). These equations of RMSE, MAPE and MAE are given by [28-31] 
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where Yi is the actual observed values, Fi is the fitted or forecasting values, and n is the number of observed 

values. 

An alternative used to specify the optimal model in the training process is called as information 

criterion (IC). There are many ICs and the most common is akaike information criterion (AIC) which can be 

described by the following equation: 

 

   2 log 2AIC L p   (4) 

 

where p is the number of estimated parameters in the model and L is the likelihood [19-20]. 

The framework for Grid search of ES method shown below in Figure 1 includes four steps as 

follows. 

Step 1: Split the data into training data (ytrain) and testing data (ytest) 

Step 2: (i) Define the ES model based on combination of (t, d, s, p), note that the period of seasonal p 
depends on the characteristic of each time series; (ii) Fit the model based on combination of (b, r); 

and (iii) Calculate the accuracy scores (RMSE, MAPE, and MAE) between the training values and 

the fitted values as well as obtain the Information criterion AIC. 

Step 3: Calculate the accuracy scores (RMSE, MAPE, and MAE) between the testing values and the forecast values 

Step 4: (i) Specify the optimal ES models in step 2 according to requirement of minimum the accuracy scores 

(RMSE, MAPE, MAE) and AIC, correspond; (ii) Analysis the optimal model and the other model based on 

the accuracy scores values of the test process; and (iii) Evaluate the grid search and give the conclusion. 
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Figure 1. The framework for grid search of ES methods 

 

 

4. RESULTS AND ANALYSIS 

4.1. Data description 

Ho Chi Minh City is the largest City in Vietnam, and is also one of Vietnam's most important 
economic, political, cultural and educational centers. With a population of over 10 million people and a high 

concentration of industrial clusters, Ho Chi Minh City's electricity is essential and always in great demand.  

In this paper, the one-hour load demand of Ho Chi Minh City has been applied in ES Grid search.  

Figures 2(a-d) show one-hour load demand for a typical year (from 2018-01-01 to 2018-12-30), a typical 

moth (from 2018-12-03 to 2018-12-30), a typical week (from 2018-12-24 to 2018-12-30) and a typical day 

(from 2018-12-30 00 to 2018-12-30 23), respectively.  

As seen clearly in Figure 2, the seasonal cycle duration was obtained with p=24 and p=168 within 

one day and one week, respectively. Thus, in this paper, the seasonal period p is 0.24, and 168. In order to 

dismiss the random results, the data have been splitted into many cases as shown below in Table 3, in which 

the testing data correspond to 1 month and 1 week, while the training data-1 year, 1 month and 1 week. 

 
 

 
 

(a) 

 
 

(b) 

  

 
 

(c) 

 
 

(d) 

 

Figure 2. Electric demand in Ho Chi Minh city, Vietnam: (a) 01 year, (b) 01 month, (c) 01 week, (d) 1 day 
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Table 3. The training and testing data 
Case Training Testing 

1 1 month 1 month 

2 1 year 1 month 

3 1week 1 week 

4 1 month 1 week 

 

 

4.2. Results of case 1 

In case 1, the training data is for 01 month from 2018-11-05 to 2018-12-02, and the testing dat -01 

month from 2018-12-03 to 2018-12-30. Table 4 shows the results of training process, the optimal ES models 

and the results of testing process. As obviously seen that the minimum of AIC and RMSE gives the same 
optimal ES model as for MAPE and MAE. Therefore, in case 1, there were two optimal models found.  

For testing process, the column „Optimal‟ shows the accuracy scores for the optimal ES model, and the 

column „Min‟ and „Average‟-the min and the average values for all the possible models that can be generated 

in training process. Figure 3(a) gives the fitted and training series of the training process, while Figure 3(b) 

the forecast and testing series of testing process for the first optimal model. Figure 4 indicates the accuracy 

scores for testing process, for that Figure 4(a) presents the box plot for RMSE component with the first 

column for all the possible models, the second column for the first optimal model and the third column for 

the second-optimal model. The same distributed data are plotted in Figure 4(b) and 4(c). 
 

 

Table 4. The results of case 1 
The minimum of AIC and accuracy scores of 

training process 
The optimal ES models 

(t, d, s, p, b, r) 

The accuracy scores of testing process 

AIC RMSE MAPE MAE Accuracy Optimal Min Average 

5,035.35 32.89 
  

[None, False, 'mul', 168, 

False, True] 

RMSE 215.24 173.93 1,101.63 

MAPE 6.37 4.42 24.46 

MAE 177.63 124.88 950.33 

  
0.84 22.85 

['add', True, 'mul', 168, 

True, False] 

RMSE 173.93 173.93 1,101.63 

MAPE 4.42 4.42 24.46 

MAE 124.88 124.88 950.33 

 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Fitted and training series, (b) forecast and testing series 
 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 4. The box plot of accuracy scores for testing process in case 1: (a) RMSE, (b) MAPE, and (c) MAE 
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4.3. Results of case 2 

In case 2, the training data are for 01 year from 2017-12-04 to 2018-12-02, and the testing data-01 

month from 2018-12-03 to 2018-12-30. The results of training process, the optimal ES models and the results 

of testing process are presented in Table 5. It is revealed that the minimum of AIC and RMSE as well as 

MAPE and MAE gives the two optimal ES model as indicated in case 2. Figures 5(a) and 5(b) show the 

series of training and testing process for the first optimal model. The accuracy scores for testing process are 

plotted in Figure 6. 

 
 

Table 5. The results of case 2 
The minimum of AIC and accuracy scores of training 

process 

The optimal ES models The accuracy scores of testing process 

AIC RMSE MAPE MAE (t, d, s, p, b, r) Accuracy Optimal Min Average 

66648.65 44.46909   ['add', True, 'mul', 168, 

True, True] 

RMSE 

MAPE 

MAE 

354.76 

10.81 

317.50 

251.80 

7.10 

198.86 

1,123.99 

23.32 

980.55 

  1.175906 31.87514 ['add', True, 'mul', 168, 

True, False] 

RMSE 

MAPE 

MAE 

354.77 

10.81 

317.51 

251.80 

7.10 

198.86 

1,123.99 

23.32 

980.55 

 
 

 
(a) 

 
(b) 

 

Figure 5. (a) Fitted and training series, (b) forecast and testing series 

 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. The box plot of accuracy scores for testing process in case 2: (a) RMSE, (b) MAPE, and (c) MAE 

 

 

4.4. Results of case 3 

In case 3, the training data are for 01 week from 2018-12-17 to 2018-12-23, and the testing data-1 

week from 2018-12-24 to 2018-12-30. Table 6 shows the results of training process, the optimal ES models 
and the results of testing process. The minima of AIC, RMSE, MAPE and MAE give the same optimal ES 

model, so in case 3 we just have 01 optimal model for AIC and accuracy scores. The series for the training 

and testing processes are presented in Figures 7(a) and 7(b), respectively. Figure 8 shows the box plot of the 

accuracy scores for testing process. 
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Table 6. The results of case 3 
The minimum of AIC and accuracy scores of 

training process 

The optimal ES 

models 

(t, d, s, p, b, r) 

The accuracy scores of testing process 

AIC RMSE MAPE MAE Accuracy Optimal Min Average 

1281.991 38.19976 0.903771 25.23777 
['add', True, 'mul', 

24, True, True] 

RMSE 301.79 298.59 1,094.01 

MAPE 8.99 8.86 16.17 

MAE 252.34 238.37 945.51 

 

 

 
(a) 

 
(b) 

 

Figure 7. (a) Fitted and training series, (b) forecast and testing series 

 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. The box plot of accuracy scores for testing process in case 3: (a) RMSE, (b) MAPE, and (c) MAE 

 

 

4.5. Results of case 4 

In case 4, the training data are for 01 month from 2018-11-26 to 2018-12-23, the testing data-1 week 

from 2018-12-24 to 2018-12-30. Similarly, Table 7 shows the results of training process, the optimal ES 

models and the results of testing process. The minimum of AIC, RMSE, MAPE and MAE gives the same 

optimal ES model, indicating the presence of 01 optimal models for AIC and accuracy scores. Figure 9(a), 

9(b) show the series for the training and testing processes, respectively. The accuracy scores for testing 

process built in the box plot are presented in Figure 10. 

 

 

Table 7. The results of case 4 
The minimum of AIC and accuracy scores of 

training process 

The optimal ES 

models 

(t, d, s, p, b, r) 

The accuracy scores of testing process 

AIC RMSE MAPE MAE Accuracy Optimal Min Average 

1281.991 38.19976 0.903771 25.23777 
['add', True, 'mul', 

24, True, True] 

RMSE 301.79 298.59 1,094.01 

MAPE 8.99 8.86 16.17 

MAE 252.34 238.37 945.51 
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(a) 

 
(b) 

 

Figure 9. (a) Fitted and training series, (b) forecast and testing series 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 10. The box plot of accuracy scores for testing process in case 4: (a) RMSE, (b) MAPE, and (c) MAE 

 

 

4.6. Analysis 

In the paper as described above, the optimal of ES models in training process was determined by  

the minimum of Information Criterion AIC and accuracy scores such as RMSE, MAPE and MAE. In other 

words, the criterion used to specify the optimal of ES models in training process is this minimum.  

The analysis of data listed from Table 4 to Table 7 indicated the existence of the optimal model that satisfies 

the criterion of minimum of Information criterion AIC, accuracy scores RMSE, MAPE, MAE. In cases 1, 2, 

there are the duplicate optimal models that satisfy both requirements. Especially, in cases 3, 4, there is only 

one optimal model satisfy all minima of AIC, RMSE, MAPE and MAE.  

Noted that the time horizon of training and testing are different in cases 1 to 4. Indeed, case 1 and 
case 2 have the same testing time (1 month) and different training time (1 month and 1 year), case 1 and case 

4 have different testing time (1 month and 1 week) and the same training time (1 month). The comparison 

between the ES models described in cases 1 to 4 shows that each time horizon for training and testing has 

different type of trend and seasonality component from those of other ones. The results showed good values 

that are promising for applying ES model in different time horizon.  

The optimal model obtained in the training process does not ensure completely the optimal results in the 

testing process. Let‟s analysis the Table 4 of case 1 for the first optimal model (minimum of AIC and RMSE). 

When using the first optimal model for the testing process, the accuracy scores of RMSE, MAPE, MAE 

correspond to 215.24MW, 6.37%, 177.63 MW, while there are the other ES models that give better results with 

minimum values of the RMSE, MAPE, MAE are 173.93MW, 4.42%, 124.88MW, respectively. But in comparison 

with the average values of all the models (the RMSE, MAPE, MAE values of 1,101.63MW, 24.46%, 950.33MW, 
respectively), the accuracy scores of the first optimal model are too small. Besides, analyzing the boxplot of 

accuracy scores shown in Figure 4 clearly indicates that the accuracy scores of the first optimal model nearly the 
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same of the minimum values of all the other models. Moreover, Figure 3b also shows the forecast values are well 

consistent with the testing values for the first optimal model. We have the same results for the second-optimal 

model (minimum of MAPE, MAE) for the case 1, and the same for case 2, 3, 4. Especially, we have very good 

results in case 3 and case 4, in that, we just have only optimal model for each case, and the accuracy scores of the 

optimal models have nearly the same values with the min values for testing process.  

 

 

5. CONCLUSION 

Based on the math formulas of ES taxonomy, a framework for Grid search of ES method was 

proposed. In the training process, the minimum of AIC, accuracy scores of RMSE, MAPE, MAE was applied 
to specify the optimal ES models. In the testing process, the accuracy scores have been used to compare  

the optimal model with all other ones. The load demand data of Ho Chi Minh City were used for the analysis 

and splitted into many cases to avoid the randomness and to improve the accuracy. The results indicated  

the existence of the optimal model that satisfies requirement of minimum for Information criterion AIC and 

accuracy scores. At the same time, in some cases, the optimal model is identified for both of AIC and 

accuracy scores (case 3, 4). In the testing process, the accuracy scores of the optimal model gave the good 

values close to the minima which were much smaller than the average values as compared to those of all 

other models. Overall, by verifying the accuracy and reliability of the grid search framework using load 

demand data in Ho Chi Minh City, the study suggests an effective way for load demand forecasting 
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