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 Wireless sensor networks comprise of a large number of lightweight and 
relatively low-cost computational nodes which their main task is to sense  
the surrounding environment and collect the information to send it wirelessly 
to a central point to take the appropriate actions. Although these networks 
had been used in various applications, achieving this task is challenging due 
to the many constraints of sensor nodes including their limited processing 

power, communication bandwidth, and power supply. Therefore, an energy 
efficient routing protocols had to be developed specifically for sensor 
networks to insure longer lifetime and reasonable performance of the 
network. In this work, we propose an energy efficient hierarchical routing 
protocol using chain-based clustering. By simulation on MATLAB,  
the proposed protocol proved to enhance the performance as it prolongs  
the lifetime of the network and decreases the energy consumption,  
the transmission delay, and the overhead compared to other existing protocols 

as it depends on some advanced methods including dynamic selection  
of number of chains method, k-means clustering method, advanced greedy 
chain construction method, and multi-factor based leader selection method. 
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1. INTRODUCTION  

A wireless sensor network (WSN) is a specialized network that consists of a number of lightweight 

nodes known as sensors. The sensors are randomly deployed in the affected area to monitor the environment 

and gather the required information, such as movement, lights, or temperature [1]. Moreover, they must work 

cooperatively and communicate to send the gathered information to a more powerful node to be used for 
useful purposes. Although the WSNs had been widely used in various applications due to the sensing ability 

of the sensors, the tiny size that allows the sensor to be deployed in hard-to-reach places, the low costs and 

the self-organizing behavior of the sensor nodes, there are many issues in WSNs due to the limited functions 

of sensors. The sensors normally have limited processing capacity, limited communication bandwidth, 

limited memory, and, most importantly, a limited power supply since they have un-rechargeable batteries.  

Considering the limitations of sensor nodes that are discussed above, applying an efficient routing 

mechanism is one of the main critical issues in WSNs. As routing in WSNs differs from conventional 

networks, many routing algorithms and protocols proposed specifically for WSNs belong to various 

categories. For instance, these include location-based protocols, mobility-based protocols, heterogeneity 

based protocols, quality of service (QoS)-based protocols, hierarchical protocols, multipath-based protocols, 

and data-centric protocols [2]. Hierarchical routing is the most used routing mechanism in WSNs as it mainly 
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aims to establish efficient energy consumption using the sensor nodes and the overall long lifetime of the 

network. Clustering is performed in hierarchical routing where the network is broken into layers. The first 

layer presents all the nodes since they too are partitioned into clusters based on some clustering algorithms. 

In each cluster, one node is elected to manage the cluster and is known as the cluster head. All the cluster 

heads together represent the second layer of the network that is responsible for sending over farther distances, 

such as to the BS. However, hierarchical routing protocols themselves have different types of clustering: 

cluster-based, chain-based, or tree-based clustering. 

In cluster-based routing protocols, the nodes in each cluster are meant to only communicate and 
forward the data directly to their cluster head. For tree-based routing protocols, the routing path is built in  

a parent-child manner, and each node always forwards to its parent node. On the other hand, chain-based 

routing protocols connect the nodes together to form a chain, and the data are forwarded along the chain to 

the BS. In this paper, we review most of the existing chain-based protocols and propose our version of  

the improved chain-based routing by including some advanced algorithms during the different phases of  

the routing path development process, including finding the optimum number of clusters in the case of chain-

based clustering. The paper organized as follows. The literature review in Section 2 is followed by our 

network and the used communication radio model in Section 3. The proposed protocol is given in Section 4, 

and its performance evaluation in comparison with other protocols in addition to statistical analyisis is 

provided in Section 5. Finally, the conclusions are given in Section 6. 

 

 

2. LITERATURE REVIEW 

Connecting the sensor nodes in a chain-like topology would highly benefit the energy consumption 

compared with other clustering approaches. Thus, more studies have been carried out to improve the routing 

process using chain-based clustering. We review most of these routing protocols by focusing on their chain 

construction algorithms and deployment area division methods. Table 1 summarizes all the reviewed protocols.  

 

 

Table 1. Chain-based hierarchical routing protocols 
Routing 

protocol 

Network type Number 

of chains 

Number 

of chains 

Chain construction method Leader selection 

PEGASIS [3] homogeneous single Static Greedy algorithm In turn, in round-robin manner 

EECB [4] homogeneous single Static Greedy algorithm with distance 

threshold 

Considers both the residual 

energy of the node and the 

distance to BS 

IEEPB [5] homogeneous single Static Advanced greedy algorithm Uses weighting method that 

considers both the residual 

energy of nodes and the 

distance from node to BS. 

SCBC [6] heterogeneous Multiple Static Greedy algorithm but SCBC starts with 

the nearest and the Leader node with 

two different chains to form one chain. 

The residual energy and cost 

function are considered. 

Secondary leader nodes are 

selected to send to the BS 

Ghosh et al. [8] 

 

homogeneous single Static Ant Colony Optimization [7] Considers both the remaining 

energy of the node and the 

distance to BS 

Gupta and 

Saraswat [9] 

homogeneous single Static Greedy algorithm with the sensor nodes 

allowed to opt visited nodes again if 

they are the nearest one from those 

sensor 

Considers the degree of 

nodes in addition to the 

residual energy and distance 

from the BS 

EPEGASIS 

[10] 

homogeneous Multiple Static Greedy algorithm In turn, in round-robin 

manner 

CHIRON[11] homogeneous multiple Static Greedy algorithm Considers the residual energy 

only. 

Shekh et al. in 

[13] 

homogeneous Multiple Static Greedy algorithm Considers the nodes density 

in addition to the residual 

energy and distance from the 

BS 

Hadjila et al. 

[14] 

homogeneous multiple Static Nodes in each group forms a single 

chain and sorted according to their 

ordinates. 

First node in the chain, i.e. 

closest to the BS is the leader 

node. 

Jawad and Ali 

[15] 

homogeneous multiple Static Greedy algorithm Considers both the residual 

energy of the node and the 

distance to BS 

Ruan et al. [16] homogeneous multiple Static Ant Colony Optimization Uses the neural network to 

select the leader nodes. 
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Routing 

protocol 

Network type Number 

of chains 

Number 

of chains 

Chain construction method Leader selection 

Patel and 

Munjani [17] 

homogeneous multiple Static Greedy algorithm In turn 

In round-robin manner 

Bhatti and 

Raina [18] 

Homogeneous Single Static Modified Greedy algorithm with fuzzy 

system and cuckoo search algorithm 

In turn 

In round-robin manner 

PEGASIS-INL 

[19] 

Homogeneous Single Static Greedy algorithm Based on the measured RSSI 

value 

PEG-BBO [20] Homogeneous Single Static Biogeography-Based Optimization x 

IECBSN [21] Homogeneous multiple Static Forms multiple chains P, where P 

equals N/M as N the initial number of 

nodes and M the chains length. Starting 

from the closest node to the BS. 

Considers both the residual 

energy of the node and the 

distance to BS 

Hop PEGASIS 

[22] 

Homogeneous multiple Static Forms five clusters starting from the 

closest to the BS.  

x 

 
 

2.1. Chain construction 

The nodes in chain-based clustering are supposed to involve multi-hop communication where the 

data packets are transmitted over several nodes in order to reach the final destination. However, the distance 

between each node and their neighbor node in the chain plays a major role in energy consumption (a larger 

distance means more energy consumption for transmitting). The first and most-used algorithm in chain-based 

routing protocols for connecting the nodes together is the greedy algorithm. In the greedy approach, local 

optimization is performed in which each node gets connected to the nearest available node despite the final 

result. As a result, a chain of nodes is constructed, but as the process progresses, the communication distance 

gets longer, as shown in Figure 1(a). The first use of this algorithm in hierarchical routing was in  

the PEGASIS protocol proposed by Lindsey and Raghavendra [3]. Other scholars suggested some 
modifications to solve the long link problem (LL) caused by the greedy algorithm where the data packet has 

to be transmitted through halve of the nodes in the chain in best case scenario to reach the leader node,  

and through all the nodes in worst case scenario if the leader node is located at the end of the chain. In EECB 

protocol [4], applying a threshold distance was proposed that if the distance between a node and its "ready to 

be" neighbor node exceeds a threshold value, the two nodes will not be allowed to connect. Instead, the latter 

node will search the chain of already connected nodes and connect to the nearest one of them.  

A more advanced modification of the greedy algorithm was presented in the IEEPB protocol [5].  

In the IEEPB, all nodes get the chance to search the already formed chain of nodes to connect to the nearest 

one of them. Therefore, the communication distance was further reduced in comparison to the PEGASIS and 

EECB algorithms. Figure 1(b) shows a chain constructed based on the Advanced Greedy Algorithm proposed 

in the IEEPB. Furthermore, the SCBC protocol [6] expanded the research list for the nodes by starting the 

construction of two chains at the same time. Therefore, as the process progresses, the nodes will have two 
already formed chains to search for their nearest node. Another known algorithm used for chain construction 

is Ant Colony Optimization (ACO) [7]. The algorithm guarantees the optimum communication path between 

the nodes and was applied in [8] by Ghosh et al. Nevertheless, connecting all the nodes into a single chain is 

not the most sufficient way of routing. The length of the routing path in terms of the number of hops/nodes 

affects the transmission delay since each node in the path has to wait to receive the data from its previous 

neighbor, aggregates the received data with its own sensed data, and then transmits it to the next neighboring 

node. Moreover, the leader node, which is the one sending to the BS, could be at any place on the chain and 

occasionally farther from the BS than other nodes. Therefore, redundant data transmission occurs when the 

closer nodes have to send their data in the direction of the leader node to be sent again by  

the leader in the direction of the BS. Gupta and Saraswat in [9] suggested that to order the nodes from  

the farthest to closest from the BS during the chain construction phase, the nodes are only allowed to connect 
with the nodes that are closer to the BS so the data transmission is more often in the BS direction. 

 
 

  
(a) (b) 

 

Figure 1. Chain of nodes constructed based on the greedy algorithm; (b) A chain of nodes constructed based 

on the advanced greedy algorithm 
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2.2. Network partition 

In addition to the transmission delay and the redundant data transmission problems, constructing a 

single chain including all the nodes causes high energy consumption, especially in high-density node 

situations. The probability of having more connections for the nodes means higher energy consumed for 

receiving data from the multiple child nodes. Therefore, some protocols are focused on finding the optimum 

methods to divide the nodes into multiple chains. One of the earliest efforts was the EPEGASIS protocol [10] 

in which dividing the deployment area into levels using a concentric clustering scheme was suggested,  

as presented in Figure 2(a). Per each level, a separate chain is constructed based on the greedy algorithm.  
The division method is further enhanced by the CHIRON protocol [11] to slightly control the lengths of the 

chains by applying the BeamStar technique [12] and dividing each level in half. Moreover, Shekh et al.  

in [13] wanted to control the lengths of chains even more in the farthest groups by dividing each level into  

a fixed sized group. The result of the partitioning method performed by Shekh et al. is shown in Figure 2(b).  

In addition, other protocols performed vertical partitioning instead. For instance, the SCBC protocol 

divided the area into sectors with the BS as the head of division, as shown in Figure 2(c). Conversely, Hadjila 

et al.'s protocol [14] divided the area in a parallel manner. However, all the previous discussed works 

performed the partitioning in terms of the area space, regardless of the actual locations of the deployed sensor 

nodes. For random deployment, this could produce unnecessary energy consumption since the nodes may be 

forced to be assigned to groups with farther nodes to connect with instead of closer available neighbors. 

Therefore, partitioning the nodes based on their locations would save significant energy, and one of  

the known applied methods in other hierarchical protocols is k-means clustering. Jawad and Ali applied  
the method for chain-based routing in [15].  

 

 

   
(a) (b) (c) 

 

Figure 2. (a) Concentric clustering scheme; (b) Network partitioning by Shekh et al.;  

(c) Sectors scheme in SCBC 

 

 

2.3. Leader nodes selection 

In hierarchical routing, the node that is given the leader role will be responsible for receiving all  
the collected data from the rest of the nodes and forwarding it to the BS. Although the sizes of the received 

data packets are usually fixed due to data fusion and aggregation execution on every node, the leader node 

would still expend more energy than the other nodes due to the often large distance to the BS. Therefore,  

the selection of the leader node has to be a careful process in order to not over-consume the node's energy. 

Some frequently used factors for leader selection are the residual energy of the candidate node and its 

distance from the BS. In addition, some methods consider the number of connections or child nodes. 

 

 

3. NETWORK AND RADIO MODEL  

3.1. Network model 

In our work, we assume the following. 
a) Sensor nodes are stationary and randomly distributed in a square field. 

b) The BS is stationary as well and deployed outside of the sensing field on one of the symmetric axes.  

c) The network is homogeneous since all sensor nodes have the same resources capabilities. 

d) The BS is not energy constrained.  

e) Each node has the capability to communicate with BS directly.  

Figure 3 shows a representation of our network model.  
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Figure 3. Network model 

 

 

3.2. Radio model 

The same radio model described in [23, 24] is adopted here.  

 

 
 

In this model, to transmit an L bit message a distance of d, the radio expends the following:   
 

  (   )                   
     (1) 

 

To receive the L bit message, in the model, the radio expends the following: 

 

  ( )              (2) 

 

The sensor dissipates       on running the transmitter’s or the receiver’s circuitry. In the 

transmission, the sensor would also dissipate     , and the value depends on the distance between the sensor 

and the receiver node. In addition, the sensor will dissipate additional energy in the case of transmission.  

In our adopted combined model, if the distance between the sensor and the receiving node is small, the free 

space model is used, and the sensor would dissipate         
 , where           100 pJ/bit/m2 

Otherwise, the multipath fading model is used, and the sensor would dissipate         
 , where      = 

   = 0.0013 pJ/bit/m4.   

 
 

4. THE PROPOSED SCHEME  

Our Improved Multi-Chain Routing Protocol (IMCRP) consists of several phases that are executed 

cooperatively by the BS and sensor nodes throughout the network’s lifetime. Figure 4 shows the IMCRP 

execution model from the start to the end of the network’s lifetime.  
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Figure 4. Phases of IMCRP protocol 

 

 

5.1. Decision about the number of chains 

Forming the right number of chains (K) is an important step in hierarchal routing protocols since it 

manages less energy consumption. The optimal K value is affected by many factors, including the used 

energy model, the nodes’ density, the BS location, the size of the sensing field and other factors [25]. In our 

protocol, we adopted an analytical model that is applicable to our network and energy models that were 

derived by N. Amini et al. in [24]. The model gives a range of the optimal K values by   

 

      √
       

 

   (         
       

  )
 (3) 

 

where M is the side of a square sensing field and R is the distance from the BS to the center of  

the sensing field, as presented in Figure. 3. The minimum and maximum values are given by the following 

equations, which are based on the free space and the multipath radio models, respectively.  

 

    (    )   √
       

 

   (   (
  

 
   )      

  )
 (4) 

 

   (    )   √
       

 

   (   (
      

   
 
 

 
       )      

  )
     (5) 

 

To find the optimal K value among the given range, a simulation has to be performed on  

the network before the actual deployment of the protocol. However, Figure 5 shows that our simulation with 

different scenarios and all the various K values gave similar network lifetimes. Therefore, to dynamically 

find the optimal K value by the BS during the network operation, we calculate the optimal K value in our 

protocol as the average of      given by To find the optimal K value among the range given by the pervious 

equations, a simulation has to be performed on the network before the actual deployment of the protocol. 

However, we conducted a simulation with different network sizes using all the various K values. Figures 5 
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and 6 show the results where all the k values in the range result in similar network lifetimes. According to  

the results, the optimal K value vary as the nodes density change. Therefore, to dynamically find the optimal 

K value by the BS during the network operation, we calculate the optimal K value in our protocol as  

the average of       given by: 

 

     ( ∑  
    (    )

       (    )
 ) (6) 

 
Note that the K value will change throughout the network lifetime depending on number of live nodes N.  

 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5. The lifetime of 1002 meter network vs. the number of constructed chains: (a) 100-node network; 

(b) 200-node network; (c) 300-node network 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. The lifetime of 2002 meter network vs. the number of constructed chains: (a) 100-node network; 

(b) 200-node network; (c) 300-node network 

 

 

5.2. Nodes division  

The K-means clustering algorithm is used in this protocol to divide the nodes in the area into K 

groups based on the Euclidean distances between the nodes. Therefore, the result of this clustering algorithm 

is each node joining its nearest group of nodes. At first, K random virtual points are chosen to be the initial 

centroid points, and each centroid will present a group. Then, the Euclidean distance between nodes and all K 

centroid points is calculated in order for each node to join the group with the nearest centroid. Note that the 

Euclidean distance in the two-dimensional space between 2 points   (     )  nd   (     ) is given by: 

 

 (   )  √(     )
  (     )

     (7) 

 

When all nodes are initially assigned into the K groups, a loop is executed where the positions of  
the centroid points are recalculated in each iteration based on the locations of the member nodes of the group. 

Node assignments keep changing since the nearest centroid identity may change during the process. The loop 

ends when no further changes in the centroid points’ positions occur and the final assignment of K groups is 

broadcasted over the network. The centroid of a group of s member nodes is given by: 
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∑   
 
    

 

 
∑   
 
   )   (8) 

 

Note that the whole process of nodes division is performed remotely by the BS node at the start of 

the network operation and re-executed in case of the change of the optimal k value.  

 

 
Algorithm: Network division using k-means 

1 Choose K random points as the initial centroid points    

2 Assign a group ID to each centroid 

3 for each node i in {List of all alive nodes} do 

4        Calculate distance between node i and all K centroid points.  

5        Assign node i to the group of nearest centroid point   

6 end for 

7 for each group j in {List of all K groups} do  

8        Recalculate the centroid point j position based on the 

coordinates of group j’s nodes. Equation 5 applied.  

9 end for  

1

0: 

Compare the last and pervious centroid points positions. 

1

1: 

Repeat steps 3-10 until no changes in the centroid points position.  

 

 

5.3. Chain construction 

In contrast to previous phases, the chain construction is a distributed process in which all the nodes 

have to communicate and cooperate to construct the chain of their group. However, the nodes’ 

communication during this phase is limited to only inside their group, and each chain is constructed 
independently of the rest of the K chains. The chaining mechanism is done using an enhanced greedy 

algorithm [5]. The algorithm allows the node to have multiple connections, and more nodes joining the chain 

leads to better choices for the remaining nodes to connect. Moreover, in the case of node death, only  

the affected chain is re-constructed.  

 

 
Algorithm: Chain formation by enhanced greedy algorithm 

1 for each group i in {List of K groups} do 

2       Set the node which is nearest to centroid as EndNode 

3       for each node j in {List of nodes didn’t join the chain} do 

4             Calculate distance between node j and EndNode 

5       end for 

6       Select the nearest node to be NextNode waiting to join the chain 

7       for each node h in {List of nodes joined the chain} do 

8             Calculate distance between node h and NextNode 

9       end for 

1

0: 

          NextNode join chain i by connecting to nearest node on chain 

i 

1

1: 

          EndNode ← NextNode 

1

2: 

         Repeat steps 3-10 until all nodes in the group join the chain 

1

3: 

end for 

 

 

5.4. Leaders and head leader selection  

To choose better-fitting nodes to be the chain leaders (CL), the selection method depends on  

the weight of the node that considers two parameters: the distance of the node to the BS and its residual 

energy, as shown in (9). In every round, the combined weight of each node is compared with other nodes in 

the same chain, and the node with the minimum weight is selected as the chain leader of the round.  

 

      ( )    
                ( )

             ( )
       (9) 

 

Furthermore, one leader node out of the K chain leaders is selected as the head leader (HL) to be 

responsible for sending data to the BS. The HL collects the data from other leaders through a chain topology 

that was formed and started from the HL itself.  
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Algorithm: Leaders and head leader selection 

1

: 

for each chain i in {List of K chains} do 

2

: 

      for each node j in {List of nodes in chain i} do 

3

: 

            Calculate weight of node i.   

            weight[i]=residual energy[i]/distanceToBS[i] 

4

: 

      end for         

5

: 

      Select the node with minimum(weight) to be LeaderNode of chain i 

6

: 

end for 

7

: 

Select the leader node with minimum(weight) to be HeadLeader of 

network 

 

 

5. EVALUATION AND SIMULATION RESULTS 

5.1. Simulation parameters 

To evaluate the performance of the IMCRP, we simulated the IMCRP, IEEPB, and PEGASIS 

protocols by using MATLAB 2017a. The evaluation criteria adopted in this paper are the following:  

a) Network lifetime  

b) Delay  

c) Overhead 

The network and energy parameters used in this simulation are shown in Table 2.  

 

 

Table 2. Simulation parameters 
Parameter Value 

Number of deployed nodes (N) 100, 200, and 300 

Deployment area 100 * 100 m 

Base Station location (50,175) 

Initial energy 0.5 J 

      50 nJ/bit 

    100 pJ/bit/m2 

    0.0013pJ/bit/m4 

Threshold distance 
√      ⁄  

Size of data packet 2000 bits 

Data aggregation energy 5 nJ/bit 

 

 

5.2. Simulation results  

The results presented are based on the average of 10 simulations. The simulations are performed 

with three scenarios regarding the number of deployed sensor nodes. Therefore, the number of chains in  

the IMCRP protocol varies for each scenario since the number of nodes affects the optimal-K value, as 

mentioned in Section 4.  

 

 

5.2.1. Network Lifetime  
The network lifetime may be defined in two ways:  

a) The time from when the network begins operating until the death of the first node, or  

b) The time from when the network begins operating until the death of the last node.  

However, we adopt the second definition in this paper and the results are as follows. In Figure 7(a), 

the simulation of the 100-node network shows that PEGASIS operation ends at 1664 rounds and the IEEPB 

ends at 1881. Meanwhile, our IMCRP protocol continued for 1970 rounds with a 4.7% improvement over  

the IEEPB and an 18.4% over the PEGASIS. In Figure 7(b), the simulation of the 200-node network shows 

that the lifetime of PEGASIS stays the same as in the 100-node network with 1663 rounds and the IEEPB 

operation ended at 1831 with 2.7% less performance in comparison with the 100-node scenario. On the other 

hand, the IMCRP’s lifetime increased as expected and continued to 2258 rounds, thus giving a 23.3% 

improvement over the IEEPB. Figure 7(c) shows the last scenario with the 300-node network’s lifetime 
results. The PEGASIS protocol again gave a similar performance as in 100 and 200-node network scenarios. 

For the IEEPB, the lifetime ends at only 1785 rounds, which proves that the IEEPB performance decreases as 
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the number of nodes increases. The high node density in the IEEPB causes larger energy consumption by 

sensor nodes since each node will have a greater number of connected nodes or “child nodes”. Therefore,  

the energy spent in receiving data increases as well. However, the IMCRP does not have this problem due to 

the optimal-K model that takes into consideration the nodes’ density. The proposed protocol gave 2034 

rounds with the 300-node network, thus giving a 9% improvement over the IEEPB and 17.4% over  

the PEGASIS. 

The figures show that as soon as some nodes starting to die, the rest of nodes start to lose more 

energy and die as well. This happen due the distance between the nodes in the chain getting larger therefore 
losing energy becomes higher. Therefore, the re-clustering of the network as in IMCRP help a lot in this case 

where the still alive nodes get the opportunity to join their nearest alive nodes cluster after the death of their 

nearest dead nodes.  

 

 

 
(a) 

 

 

 
(b) 

 
(c) 

 

Figure 7. The network lifetime of 1002 meter network: (a) 100-node network; (b) 200-node network;  
(c) 300-node network 

 

 

5.2.2. Delay 

We measured the transmission delay as the maximum number of hops or "nodes" that a data packet 

travels in order to reach the chain leader. The simulation involved the delay in the IEEPB and IMCRP 

protocols in which the first is a single-chain protocol and the latter is a multiple-chain protocol. Thus,  

the delay result in the IEEPB is very large in all three scenarios compared to the IMCRP due to the single 

chain routing, as shown in Figure 8. In the 100-node network, the IMCRP network will start with dividing 

the 100 nodes into 4 chains based on (3), (4), and (5) while the IEEPB network will form a single chain 

containing all the 100 alive nodes. Therefore, Figure 8(a) shows that the IEEPB has an average delay of 40 
hops and that the IMCRP has an average delay of 18 hops due the smaller length of chains compared to 
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IEEPB. For the second scenario with double the number of nodes, Figure 8(b) shows that the IEEPB has 

double the delay with an average of 80 hops due the single chain length increase, while the delay in IMCRP 

has increased only 38% with an average of 25 hops as the number of chains “k value” changed too and large 

chains are being avoided. Figure 8(c) shows that IEEPB delay keeps rising with an average of 110 hops and 

that the IMCRP managed to stay low at an average of 30 hops.  

 

 

 
(a) 

 

 

 
(b) 

 
(c) 

 

Figure 8. The transmission delay of 1002 meter network: (a) 100-node network; (b) 200-node network;  

(c) 300-node network 

 

 

5.2.3. Overhead 
Another important metric we considered in our evaluation is the overhead. The overhead that 

resulted from the control packets to establish the routing path in hierarchical routing protocols affects  

the overall performance and exhausts the sensors’ energy. In our simulations, we calculated the number of 

control packets exchanged between the sensor nodes and the sensor nodes and the BS during the chain 

construction phase. Note that the number of control packets is affected by the number of nodes in a single 

chain and the used algorithm to construct the chain. Figure 9 shows the total number of control packets 

throughout the network’s lifetime for all three scenarios. In the 100-node network, the results are close. 

PEGASIS had a total of 135014 control packets, IEEPB had 149029 control packets, and IMCRP had  

the lowest overhead with 62353 control packets. In the 200-node network, PEGASIS’s overhead increased 

dramatically with 675703 control packets, and the same occurred in the IEEPB with 786412. Meanwhile, in 

the IMCRP, a more reasonable increase occurred with 176100 control packets. Finally, with the 300-node 

network, PEGASIS had 1339722 control packets, and IEEPB had 1765133 control packets, while IMCRP 
maintained 324350 control packets. Since the advanced greedy algorithm used in IEEPB protocol has more 

complexity than the greedy algorithm used in PEGASIS, the number of control packets needed is higher. 

However, IMCRP protocol managed to get lower control packets than both PEGASIS and IEEPB due  

the fewer number of nodes in each chain.  
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Figure 9. The overhead in 100-, 200-, and 300-node networks 
 

 

5.3. Statistical inference  

Pair wise comparison is done between our IMCRP and PEGASIS or IEEPB after each round 

regarding the number of alive nodes (AliveNodes) as it forms a bivariate variable. Paired t-test is used for 

statistical inference and the null hypotheses H0 and the alternative hypotheses H1 in both comparison cases 

for all three scenarios 100, 200, and 300 deployed nodes are as follows:   

 

 

       : (                                 )  

       : (                                 )   

        : (                               )  

        : (                               )   

 

 

       : (                                 )  

       : (                                 )   

        : (                               )  

        : (                               )   

 

       : (                                 )  

       : (                                 )   

        : (                               )  

        : (                               )   

 

The test statistic t with n-1 degrees of freedom is defined as 
 

       (   √   )   (10) 

 

Where Mean and SD are the mean and standard deviation of the difference of the number of alive nodes in 

two large samples of size n, as n is the total number of rounds. The 95% confidence interval is defined as  

 

           (
  

√   
)  (11) 

 

Table 3 shows the result of paired-t test obtained by pair wise testing of IMCRP with PEGASIS and 

IEEPB. It shows the mean, standard deviation and the lower and upper limits for the 95% confidence 

interval. Where p indicates the probability of the calculated value to obey the null hypotheses. A value of p < 

0.05 indicates that the null hypotheses are rejected at 5% significance level and the alternatives hypotheses 

are accepted at 95% confidence level.  
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Table 3. The results of paired t-test 

Comparison 

Protocol 
N Mean 

Standard 

Deviation 

Std. Error 

Mean 

95% Confidence 

interval 
Significance 

level 
t value 

p 

value 
Lower upper 

PEGASIS 
1

0
0
 16.46492 27.63920 .61481 15.25919 17.67065 Reject at 5% 26.780 

< 10-

3 

IEEPB 5.23780 12.56323 .27946 4.68974 5.78586 Reject at 5% 18.743 
< 10-

3 

PEGASIS 

2
0

0
 48.78091 67.95142 1.41781 46.00059 51.56123 Reject at 5% 34.406 

< 10-

3 

IEEPB 34.53592 56.03568 1.16919 32.24314 36.82869 Reject at 5% 29.538 
< 10-

3 

PEGASIS 

3
0

0
 40.23540 70.03119 1.52857 37.23773 43.23307 Reject at 5% 26.322 

< 10-

3 

IEEPB 36.30231 66.83366 1.48154 33.39682 39.20780 Reject at 5% 24.503 
< 10-

3 

 

 

6. CONCLUSIONS 

Chain-based routing was discussed by including some of the algorithms concerning chain 

constriction and network partitioning. Then, we proposed an improved IMCRP protocol, which proved to 

provide efficient energy consumption, low transmission delay, and low control overhead in comparison with 

other protocols. The protocol constructed multiple chains using an advance greedy algorithm and k-mean 

clustering. Moreover, the main design improvement allowed the protocol to dynamically select the optimum 

number of chains throughout the network lifetime based on the current live nodes. At the end, paired t-test is 

used to prove the significance of data.  
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