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 The Internet of Things (IoT) combines many devices with various platforms, 
computing capabilities and functions. The heterogeneity of the network and 
the ubiquity of IoT devices place increased demands on security and privacy 

protection. Therefore, cryptographic mechanisms must be strong enough to 
meet these increased requirements, but at the same time they must be 
effective enough to be implemented on devices with disabilities. One of  
the limited devices are microcontrollers and smart cards. This paper presents 
the performance and memory limitations of modern cryptographic primitives 
and schemes on various types of devices that can be used in IoT. In this 
article, we provided a detailed assessment of the performance of the most 
commonly used cryptographic algorithms on devices with disabilities that 
often appear on IoT networks. We relied on the most popular open source 

microcontroller development platform, on the mbed platform. To provide a 
data protection function, we used cryptography asymmetric fully 
homomorphic encryption in the binary ring and symmetric cryptography 
AES 128 bit. In addition, we compared run-time encryption and decryption 
on a personal computer (PC) with Windows 7, the Bluetooth Low Energy 
(BLE) Nano Kit microcontroller, the BLE Nano 1.5, and the smartcard  
ML3-36k-R1.  
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1. INTRODUCTION  

The Internet of Things (IoT) has tightly entered our lives and billions of people around the world. 

However, an increase in the number of connected devices leads to an increase in security risks: from physical 

harm to people to downtime and damage to equipment - it can even be pipelines, blast furnaces and plants for 

generating electricity. Since a number of such IoT facilities and systems have already been attacked and 

significant damage has been done, ensuring their protection comes to the fore. As IoT technologies evolve, 

the number of devices connected to each other is also increasing. These devices provide an unprecedented 

ability to identify and control the environment. Sensor data can be transferred between devices via remote 

data to the analyzed center. The security of this technology is still a big question, because it is still unsafe by 

nature. For embedded systems, this is not a new security issue [1-3]. Security issues such as eavesdropping 

can illegally affect people’s daily activities, even a -legitimate subject can collect data without user consent. 
The easiest way to ensure data privacy is to apply encryption to the data [4, 5]. 

The IoT, like any rapidly developing technology, is experiencing a number of “growth diseases”, 

among which the most serious is the security problem. The more “smart” devices are connected to  

the network, the higher the risks associated with unauthorized access to the IoT system and the use of its 

capabilities by attackers. 

mailto:temyrbekovazhanerke2@gmail.com
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The development of the concept of the IOT and its implementation in various fields provides for  

the presence of tens of billions of stand-alone devices. According to the Statista portal, in 2017 there are 

already more than 20 billion of them, and by 2025 at least 75 billion are expected. All of them are connected 

to the Network and transmit data corresponding to their functionality through it. Both data and functionality 

are targets for attackers, which mean they must be protected. 

In addition to the basic security features, confidentiality must also be considered in the IoT.  

Many IoT services and applications provide confidential and personal information that may be disclosed by 

an attacker. Unprotected confidential data may be transferred to third parties. Many privacy solutions are 

designed for powerful computers and sites on the Internet. Confidentiality solutions are usually based on 

computationally expensive cryptographic primitives. In this regard, it remains an open task to develop a safe, 
effective and confidentiality solution for IoT, which works mainly with devices with limited access.  

The main goal of this work is to show how common cryptographic primitives are required on various 

devices, and to show the perspective of some methods of maintaining confidentiality in IoT. 

In this article, we present the performance of widely used cryptographic algorithms on various 

devices and discuss their memory limitations. We implement and measure the cryptographic operations on a 

variety of platforms. The purpose of a scientific article is to performance encrypt and decrypt modern 

cryptographic algorithms, like fully homomorphic encryption in a binary number ring and block cipher on 

BLE Nano Kit and BLE Nano 1.5 microcontrollers on mbed platform, Smartcard ML3-36k-R1 on MULTOS 

platform and PC Windows 7. Then compare the execution time of various symmetric and asymmetric 

algorithms in the resource-limited IoT device and a high-performance IoT device.  

A microcontroller is an integrated circuit (IC) that can be programmed to perform a set of functions 
to control a collection of electronic devices [6, 7]. Being programmable is what makes the microcontroller 

unique. Microcontroller can be easily adopted in various applications with a variety of peripherals due to its 

merits of small size, simple architecture. Bluetooth low energy (BLE) Nano is one kind of microcontroller 

with open source platform [8]. BLE is a wireless technology standard for personal area networks. BLE is 

targeted for very low power devices, devices that can run on a coin cell battery for months or years.  

Typical applications that uses BLE are health care, fitness trackers, beacons, smart home, security, 

entertainment, proximity sensors, Industrial and automotive. In this paper we use two kinds of 

microcontrollers: BLE Nano Kit and BLE Nano 1.5. BLE Nano Kit and BLE Nano 1.5 are the smallest BLE 

development board in the market. The core is Nordic nRF51822 (an ARM Cortex-M0 SoC plus BLE 

capability) running at 16MHz with ultra-low power consumption. You can quickly produce porotypes and 

demos target for IoT and other interesting projects. BLE Nano could operate under 1.8V to 3.3V, therefore it 

works with a lot of electronic components. In short, BLE Nano Kit and BLE Nano 1.5 have a broad 
developing future because of its low cost, cross-OS scalability, open source and easy usage features [9, 10]. 

As a result, various multifunctional applications can be developed on this platform. To perform the operation 

as a smart card, we chose ML3-36k-R1 smart card. Our card has an M3 genetic ML3-36k-R1 implementation 

by MULTOS.  

The rest of the paper is organized as follows. In Section 2, we overview the main features and 

applicability of both block cipher and fully homomorphic encryption in a binary number ring. In Section 3 

we present the running time of different algorithms in our microcontroller, smart card and PC and issues as 

well as discuss the adoption of the approach. Finally, in Section 4, we report the final conclusions of  

the paper. 

 

 

2. RESEARCH METHOD 

This section discusses in detail the method and process for this experimental encryption method and 

the briefly introduces the main characteristics and advantages of block cipher and fully homomorphic 

encryption in a binary number ring, the two proposed technologies.  

 

2.1.   Block cipher 

To ensure security and maintain confidentiality of data, we use from the symmetric block cipher 

algorithm, we selected widely used Advanced Encryption Standard (AES) encryption. AES in addition recognized 

as Rijndael is used for analyze time securing data. In cryptography, a block cipher is a deterministic algorithm 

operating on fixed-length groups of bits, called blocks, with an unvarying transformation that is specified by a 

symmetric key. Block ciphers are important elementary components in the design of many cryptographic 

protocols, and are widely used to implement encryption of bulk data. AES is based on a design principle known as 
a substitution-permutation network, a combination of both substitution and permutation, and is fast in both 

software and hardware [11, 12]. In this article, data was encrypted and decrypted using AES with a 128-bit key. 

The AES-128 encryption and decryption data flow diagram is shown in Figure 1. 

https://en.wikipedia.org/wiki/Substitution-permutation_network
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Figure 1. (a) and (b) AES encryption and decryption steps 

 

 

AES consists of 2 Main Parts: 

1) Encryption or Decryption Process 

In each round, the block cipher uses the four following operations [13, 14]: 

a) SubBytes: Each byte of the array is transformed using a nonlinear substitution box called the AES S-

Box. The S-Box in the Block cipher has been carefully constructed and the cipher uses only one S-Box 

throughout the encryption. 

b) ShiftRows: Is a transposition step which ensures that the last three rows of the array are shifted by a 

different number of byte positions. 

c) MixColumns: Mixes each column in the array to create even more diffusion. 
d) Addkey: Using bitwise XOR, each byte of the array is mixed with a byte of a sub-key material,  

also called round-key. The sub-key is made by "key expansion" and is derived from the main cipher key 

using a Rijndael key-schedule. 

e) Encryption process: It starts with AddKey with Key0. 

Then go to loop and do SubBytes, ShiftRows, MixColumns, Addkey in that order for 9 circles each 

circle with different circle key. Then go to final circle (circle 10) and repeat the same previous function in  

the loop except MixColumns. Decryption process: it is reverse of encryption process in every step which 

means the decryption first circle is the tenth circle of the encryption and it uses the invers functions of 

MixColumns, SubBytes, ShiftRows and us you can assume the keys arrangement and reversed too as it starts 

with Addkey10 instead of Addkey0 as it was in the encryption process. 

2) Key generation 
It involves RotWord, SubBytes and XOR bitwise operation to generate enough keys for each circle 

In the Encryption, Decryption process. As each circle works with different key generated from the key 

generation process. This encryption protects information and keys guarantees that they continue to be under 

the users influence and will be exposed in storage or in transit. Advanced encryption standard algorithm has 

replaced the data encryption standard algorithm as permitted general for an extensive variety of applications. 

 

2.2.   Fully homomorphic encryption in a binary number ring 

In the present work fully homomorphic encryption in a binary number ring technique is used for 

data encryption. Here homomorphic encryption technique is used because that is most capable of carrying 

mathematical computations evolved on data readings. Homomorphic encryption is a form of encryption 

which performs arbitrary computations on encrypted data. In cloud computing we may keep our sensitive 

data in encrypted format, but if you want to do any calculation on cipher text, the key must be shared with 
cloud service providers which may cause to exploit our data. So that to avoid share the key to cloud service 

providers instead use the Homomorphic Encryption technique. The computations include searching, sorting, 

addition, multiplications performed on cipher text [15, 16].  
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Among so many cryptographies, homomorphic encryption has attracted widely attentions from 

scholars for its special performance [17]. Common cryptography can't directly do calculations on encrypted 

data, but homomorphic encryption can, meanwhile, the operation results of homomorphic encryption will be 

automatically encrypted. The application prospect of homomorphic encryption is widely and cheerful in  

the fields of secure multi-party computation, electronic voting, cipher text searching, encrypted mail filtering, 

mobile cipher. Finally, security analysis is tested and further research way is pointed out.  

Homomorphic encryption seeks to aid in this encryption process by allowing specific types of 

computations to be carried out on cipher text which produces an encrypted result which is also in cipher text. 

Its outcome is the result of operations performed on the plaintext. Case in point, one person could add two 

encrypted numbers and then another person could decrypt the result, without either of them being able to find 
the value of the individual numbers.  

Fully homomorphic encryption (FHE) enables secure computation over the encrypted data of a 

single party. Craig Gentry implemented fully homomorphic encryption based on bootstrapping over partially 

homomorphic encryption by using ideal lattices. It is limited because each cipher text is noisy in some sense, 

and this noise grows as one ad and multiplies cipher texts. Gentry showed that any boots trappable Somewhat 

Homomorphic Encryption scheme can be converted into a FHE through a self-eMbedding recursion. In case 

of Gentry's "noisy" scheme, the bootstrapping procedure effectively "refreshes" the cipher text by applying to 

it the decryption procedure homomorphically, there by obtaining a new cipher text that encrypts the same 

value as before but has lower instance of noise [18]. The cipher text is periodically "refreshed" whenever  

the noise grows too complex. 

FHE in a binary number ring. The scheme of completely homomorphic encryption, which Gentry 

suggested, can be considered using the example of calculations in    [19, 20]. 

1) Encryption  

The process of data encryption can be represented as follows: 

a) We choose an arbitrary odd number       , which is a secret parameter. Let   *   +. 
b) The number      is compiled such that       , where   is an arbitrary number. This means 

that        . 

c) In the process of encryption, each m is associated with the number       , where   is chosen 

arbitrarily. Thus,        (    )   . It is easy to see that       (   )     and 
therefore an attacker can determine only the parity of the output of encryption. 

2) Decryption 

Let the encrypted number   and the secret   be known. Then the process of decrypting the data 

should contain the following actions: 

a) Decoding using a secret parameter           (    )           (  )     where 

         is called noise 

b) Obtaining the original encrypted bit:        . 

3) Justification: 

Let there be two bits           and they are associated with a pair of numbers           
and          . Let us take the secret parameter        and encrypt the data:           and 

         . The sum of these numbers is calculated: 

                           (     )                (    )(     )  
For the sum of these numbers, the decrypted message is the sum of the original bits  

     ((     )    )     ( (     )       )          . But without knowing  , 

decoding the data is not possible: ((     )    )                . Figure 2 shows the FHE in 

a binary ring is an addition operation.  
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Figure 2. Result of homomorphic encryption with the addition operation in C++ 
 

Encrypt 

Encrypt 

 

Decrypt 

 

352455854 

936455740 Add 

    1288911594 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 2, November 2020 :  894 - 902 

898 

Similarly, the operation of multiplication is checked: 

 

     (     )(     )        (         )   
      (      )(      )  

(    )((      )   (      )  )         (         )         (      

               )                         
 

The decryption procedure must be applied to the results obtained, which will result in the following:  

((    )    )     (       (         )     )         .  

 

Figure 3 illustrates the fully homomorphic encryption in a binary ring is a multiplication operation. 
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Figure 3. Result of homomorphic encryption with the multiplication operation in C++ 

 

 

3. RESULTS AND DISCUSSION 

In this section, we implement measure and compare operations on various platforms, such as 

microcontrollers, chip cards, Windows 7 PCs, which are used in the IoT environment. We implement  

the most commonly used cryptographic primitives and schemes, such as fully homomorphic encryption in a 

binary ring and AES cryptography. These cryptographic primitives and operations are used in many IoT 

security solutions.  
Resource-limited devices are considered the most used devices in the IoT infrastructure. We present 

the performance results of cryptographic primitives that are implemented on devices with limited resources, 

namely: BLE Nano kit microcontroller, BLE Nano 1.5 microcontroller, 33 MHz Multos card.  

Also, the performance results of cryptographic primitives, which are implemented by a high-performance 

device (PC with Windows 7). 

The selected cryptographies are implemented in two programing languages that depend on  

the device. Implementations of cryptographic functions on microcontrollers are written in the programming 

language C. Our test application for the Multos card is written in C. C++ is used for the implementation and 

the tests on the PC device. All these devices provide the sufficient space of RAM and storage memory for 

privacy preserving schemes. Furthermore, the devices offer programmable platforms for loading own 
applications and libraries. Chosen privacy-preserving schemes are implemented and loaded on these devices. 

The technical characteristics of BLE Nano kit microcontroller, BLE Nano 1.5 microcontroller, 33 MHz 

Multos card devices and Windows 7 PCs are shown in Table 1. 

 

 

Table 1. Technical characteristics of the devices used 
Device Processor Frequency RAME size Storage size (ROM, Flash) 

Microcontroller BLE 

Nano kit 
16 bit CPU 16MHz 16 kB 256 kB 

Microcontroller BLE 

Nano 1.5 
16 bit CPU 16MHz 32 kB 256 kB 

Smartcard ML3-36k-R1 16 bit CPU 33MHz 1088 + 960 B 280 + 60 kB 

PC with Windows 7 
64 bit  Intel (R) Celeron 

(R) CPU 
P4600 2.00 GHz 6 GB 16 GB 
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How programming works in microcontrollers?  

The mbed platform is used for the implementation and the tests on the microcontroller’s devices. 

Mbed is a platform and operating system for internet-connected devices based on 32-bit ARM Cortex-M 

microcontrollers [21]. Such devices are also known as Internet of Things devices [22]. The project is 

collaboratively developed by Arm and its technology partners. We connect the mbed microcontroller to our 

PC using USB, it looks like a USB flash drive. This small disk is represented by the mbed interface and 

allows you to save the hexadecimal files of the BLE Nano microcontrollers that we want to run directly on 

mbed without the need for drivers. When saving the .hex file to the mbed disk, it is not immediately loaded 

into the flash memory of the internal microcontroller. 

When we hit reset, the mbed interface looks at the disk for the newest .hex file it can find. If there is 
a new file, it will load it in to the microcontroller's internal FLASH memory using the JTAG interface.  

If the newest binary is already loaded, it won't load it again. It then starts the microcontroller running. 

How USB serial works? 

The mbed interface also represents the USB serial / com interface. This is basically a UART-USB 

bridge that connects to the UART interface. Therefore, if we send characters from the UART of the target 

microcontroller, they will be read by the mbed interface and transferred via USB [23]. 

For programming devices, we use terminal emulator "Tera Term". 

For the connection of microcontroller and terminal, there are two main points needed to be paid 

more attentions. 

1) Serial Communications: The first point is serial communications. In microcontroller serial communications 

with a contact type UART interface with even parity bit and 2 stop bits for every 8 bits of data transfer. 
2) Protocol Parameter Selection and Baud Rate: Serial baud rate of the contact type microcontroller is 

controlled by the clock signal of an external oscillator. BLE Nano microcontrollers have two external 

oscillators. The frequency of the slow clock is 32.768 kHz. The frequency of the main clock is 16 MHz 

and the baud rate is about 9,600 bps. 

MULTOS platform for Smartcard ML3-36k-R1 

The MULTOS platform is used for the implementation and the tests on the Smartcard’s devices.  

The purpose of the MULTOS platform is to provide a secure, device-independent platform for executing 

smart cards [24]. To this end, they developed a specification for execution and memory models, explained in 

more detail below, which all MULTOS implementations should provide. In addition to this mandatory part of 

the specification, there are also a number of additional elements, mainly related to cryptographic functions, 

which may or may not be available on a particular hardware platform [25, 26].  

Table 2 presents our experimental results for selected resource-limited devices and PC techniques. 
We measure the performance overhead on the devices used and we estimate memory/communication 

overhead. We focus on the time of main operations/phases such as the encryption time and the decryption 

time. A performance cryptographic operation on microcontrollers is measured as the number of cycles, and 

the number is converted at run time (1 cycle takes 1 microsecond on a processor with a clock frequency of  

1 MHz). Smart card, BLE Nano Kit, BLE Nano 1.5 and PC Windows 7 transaction times are average values 

calculated over 10 iterations.  

 

 

Table 2. Running time of different algorithms in resource-limited devices and pc 

Cipher 
Microcontroller 

BLE Nano kit 

Microcontroller 

BLE Nano 1.5 

Smartcard ML3-

36k-R1 
PC Windows 7 

AES 128 bit Encrypt 1,52 ms 1,48 ms 14,63 ms 0,10 ms 

AES 128 bit Decrypt 1,75 ms 1,72 ms 16,07 ms 0,12 ms 

FHE in a binary ring Encrypt 391,8 ms 390,7 ms 288,9 ms 21 ms 

FHE in a binary ring Decrypt 625,5 ms 623,5 ms 546,9 ms 46 ms 

 

 

The encryption was verified for microcontrollers by using terminal tera term software to send data and 

cypher keys from a computer. We then perform a series of tests. Figure 4 shows the implementation time of AES-

128b operations on devices with limited resources. This operation takes only a few milliseconds on these devices 
(it is suitable healthcare system real-time health monitoring). The AES encryption operation of one 128-bit data 

block is more efficient on microcontrollers than on smart cards. Initializing the card operating system and APDU 

communication between the chip card and the reader causes a time delay. Therefore, chip cards with higher 

processor frequencies than microcontrollers require longer execution time for AES cryptographic operations than 

microcontrollers. From the results, it can be shown that the performance of microcontroller is comparable to the 

performance. However, measurements show that AES features are effective and can be implemented in IoT 

security solutions that run on devices with disabilities. 

https://os.mbed.com/handbook/mbed-interface
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Figure 5 shows the implementation time of FHE in a binary ring encryption and decryption 

operations on devices with low performance. FHE in binary ring public key operations take hundreds of 

milliseconds on microcontrollers. FHE in a binary ring operations with private keys take several seconds on 

microcontrollers. The Multos cards provide direct FHE in a binary ring APIs that are optimized. In this 

regard, FHE in binary ring operations on these smart cards take from tens to hundreds of milliseconds. 

Figure 6 shows AES 128 bit, FHE in a binary ring encryption time and decryption time on PC 

Windows 7. PC Windows 7 is a high-performance device. PC Windows 7 devices provide adequate space 

and RAM memory circuits for confidentiality. In this devices offer programmable platforms for loading their 
own applications and libraries. FHE in binary ring and AES 128 bit encryption and decryption time take tens 

of milliseconds on PC Windows 7. 

 

 

 
 

Figure 4. The operating time of AES 128bit on microcontrollers and smartcards devices 

 

 

 
 

Figure 5. The operating time of FHE in a binary ring on microcontrollers and smartcards devices 

 

 

 
 

Figure 6. The operating times of AES 128 bit, FHE in a binary ring on PC Windows 7 
 

 

4. CONCLUSION  

This paper presents the performance and memory limitations of modern cryptographic primitives and 

schemes on various types of devices that can be used in IoT. Currently, symmetric ciphers and asymmetric ciphers 
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can be easily implemented in IoT services that use limited devices. In this article, the use of a hardware platform for 

creating real-life applications was satisfactory and promising in terms of speed, versatility, and security. In our 

research work, we used the good compatibility of the mbed platform with the microcontroller. As one of the most 

common microcontrollers, the BLE Nano Kit and BLE Nano 1.5 can be used in the application to provide various 

security functions. However, compared to Windows 7 x64, due to the limited processing power and memory of the 

BLE Nano Kit, BLE Nano 1.5 microcontrollers, and smartcard ML3-36k-R1 give rather low performance, especially 

when FHE is in the binary ring. Many symmetric ciphers, such as AES 128 bit, are fast enough to be implemented in 

security solutions that run on BLE Nano Kit, BLE Nano 1.5 microcontroller devices in the IoT infrastructure. On the 

other hand, security solutions based on asymmetric cryptographic operations, such as binary ring FHEs, require more 

time to execute. FHE in the binary ring takes tens to hundreds of milliseconds on devices with disabilities. For 
example, FHE in a binary ring takes several hundred seconds on microcontrollers, not suitable for real-time (health 

care) IoT applications. On the other hand, smart meters with limited microcontrollers, which usually send energy 

consumption data, can use the FHE signature in the binary ring, since the data is sent only a few times a day. 
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