
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 18, No. 3, June 2020, pp. 1596~1606

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v18.i3.pp1596-1606  1596

Journal homepage: http://ijeecs.iaescore.com

ORD-GAP: a hybrid-based labeling schemes to support XML

dynamic updates

Aisyah Amin, Su-Cheng Haw, Samini Subramaniam
Faculty of Computing and Informatics, Multimedia University, Malaysia

Article Info ABSTRACT

Article history:

Received Sep 13, 2019

Revised Dec 14, 2019

Accepted Dec 30, 2019

 eXtensible Markup Language (XML) has been widely used as the standard
for data exchange standard over the Internet. With the fast growing rate of
data, especially with high updates, it is crucial to ensure that the XML is able

to cope with frequent changes with very least effect on the existing structure.
Therefore, in this paper, we investigate on the existing labeling schemes and
mapping approaches to gauge a better understanding in terms of the
robustness of the labeling schemes and the importance of the mapping
schemes. Next, we propose ORD-GAP labeling schemes to identify the
structural relationship among XML nodes and yet, it is persistent to re-
labeling when new nodes are inserted. Subsequently, a mapping scheme is
proposed to transform XML into Relational Database (RDB). Preliminary
experimental evaluation demonstrated that the proposed approach achieve

66% better as compared to ORDPATH, and 56% better as compared to ME
labeling in terms of data loading time.

Keywords:

Dynamic updates

Labeling scheme

Mapping approach
Structural relationship

XML database

Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Su-Cheng Haw,

Faculty of Computing and Informatics,

Multimedia University, Malaysia.

Email: sucheng@mmu.edu.my

1. INTRODUCTION

Extensible Markup Language (XML) has arisen as the standard for data exchange over the Internet

due to the fact that it is easily readable by human and machine, as it uses natural language for markup

expression. Alternatively, Relational Database (RDB) is commonly being used as back-end in various

industries. Nevertheless, due to the data is process independently of its context, RDB could not fulfill the
market demand. As such, it is essential to have a good mapper for storing and retrieving XML structure

(hierarchical model) into RDB (tables with rows and columns) [1]. The key criterion for a good mapper is to

ensure that the four main structural relationships, i.e., Ancestor-Descendant (A-D), Parent-Child (P-C),

sibling and order are preserved [2, 3]. In order to do so, a good and effective labeling scheme employed on

the node (also known as node indexing) is essential [4, 5].

There are numbers of researches done on labeling scheme [6-9]. In this paper, we analyze some

recent labeling schemes, with focus on the support during dynamic updates (insertion operation). The main

types of insertion happen: (i) left-most insertion, (ii) right-most insertion, and (iii) in-between

insertion [7, 8, 10]. Nevertheless, most of the current approaches still exhibit the needs of re-labeling when

the reserved label has been used up. On the other hand, mapping plays a role to determine how effective a

XML database has been transformed into RDB. Excessive tables after the mapping process will resulted in
excessive joins; while too many information stored in a single table may not be the good solution as

well [11]. Thus, it is essential to propose a new labeling and mapping scheme to ensure (i) no loss of

information when transforming from XML to RDB storage, (ii) avoid re-labeling if dynamic updates happen,

(iii) fast query retrieval.

mailto:sucheng@mmu.edu.my

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

ORD-GAP: a hybrid-based labeling schemes to support XML dynamic updates (Aisyah Amin)

1597

The subsequent sections are organized as follows. Section 2 reviews the labeling schemes and

mapping schemes. In addition, this paper also summarizes and discusses on the advantages and disadvantages

of these schemes. Throughout the review, SigmodRecord dataset is used as an example. The partial view of

SigmodRecord Dataset is depicted in Figure 1. Section 3 proposes our proposed approach namely as ORD-

GAP labeling schemes which support dynamic updates on XML databases.

2. LITERATURE REVIEW

2.1. Review on Existing Labeling Schemes

Labeling schemes can be broadly grouped into region encoding, multiplicative, prefix-based, and
hybrid-based [3]. A region-based labeling scheme utilize the tree traversal navigation to assign label on the

nodes to preserve the ordering while ensuring the structural relationships are preserved. A prefix-based

labeling schemes [3, 12, 13] is usually the most simple scheme as it directly encode a node’s parent label as

the prefix of its label. On the other hand, multiplicative labeling scheme usually assign label based on some

arithmetic computation to identify the structural relationships among nodes. A hybrid labeling scheme,

however, is composed of some combinations of existing scheme grouping to balance between one weakness

with the strength of the other group [14].

Figure 1. A Sample of SigmodRecord XML document

V-Containment [7] is a region encoding labeling scheme, which is based on containment label [15].
Primarily, the labeling structure contains (startV, endV, level), where by startV, endV are two vectors

representing the one-time assignment of initial labeling pre/post labeling scheme, and level denotes the depth

from the root node to current node. The initial labeling schemes are assigned based on depth-first traversal.

Subsequently, to support dynamic updates, they proposed some algorithms to accommodate the insertion in

the left-most, right-most and in-between nodes. The insertion is possible if the start and end are between the

range of the previous and following siblings.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 3, June 2020 : 1596 - 1606

1598

Multiplicative labeling (ME) uses multiplication operation on odd numbers to label the XML tree. It

consists of (level, [selflabel, ordinal]), where by “level represent the node depth of the tree, selflabel is

computed as parent *ordinal (parent is the selfLabel of parent node, and ordinal is the position of the current

node within its sibling)” [8]. The root node starts as 1. The formula 2n+1 was applied to generate odd

numbers, where n represent the position of a node. In addition, they also outlined some formulas to calculate

new label for left-most, right-most and in-between insertion without any relabeling incurred.

Level-based labeling scheme (LLS) is a hybrid labeling scheme based on interval and prefix-based

labeling scheme [16]. LLS labeling structure are assigned as <d.p.s> whereby d denote the depth of level, p
(indicate as PerL) is the number of node across d level, and s is the instance serial number that recognize

nodes between the same node from the same class. If an insertion happen, the re-labeling of nodes only effect

on the node label of the subsequent inserted nodes as shown in Figure 2.

Figure 2. LLS Labeling Scheme of dynamic updates

Dynamic Prefix-based Labeling Scheme (DPLS) [13] is an example of prefix-based labeling by

extending on Dewey encoding scheme [17]. This approach has two stages, whereby the first stage includes

constructing the initial DPLS labeling based on Dewey scheme, followed by the next stage is to handle any

updates. Similarly, this approach supports three types of insertion: left-most, in-between and right-most.

Fu & Meng [18] proposed Triple-code, which consists of <start, end, parent-id>. Their approach
adopted the interval-based labeling scheme by replacing the ‘level’ tag with node’s ‘parent-id’, making it

simple to obtain P-C and sibling relationships. He [19] proposed prefix-based scheme using fractions, which

he named it as DPESF Encoding. This labeling scheme is in Number-Character format based on the mapping

rules as follows: “to map each digit 𝑛∈𝑁= {0,1,2,3,4,5,6,7,8,9} in the numerator to a matching character

𝑐∈𝐶={𝐴,𝐵,𝐶,𝐷,𝐸,𝐹,𝐺,𝐻,𝐼,𝐽}”. As such, label with (12514) is expressed as 𝐵𝐶𝐹14.

More recently, Gopinathan & Asawa [20] proposed an extended Dewey labeling scheme, which

consists of [prefix.ordinal] label to support Content and Structure Query (CAS) effectively. In addition, they

also proposed new path based indexing namely, path index (p_index) and path combined index (pc_index).

These indexes were constructed using B+Tree and HashMap respectively.

Ahn et al. [21] proposed to implement repetitive prime number [22] labeling in a Map Reduce-based
algorithm to overcome the problem of memory insufficient should a massive XML data is loaded in a single

machine. Being in parallel environment, this allows multiple machines to compute labels independently. In

another research work, Mohammed et al. [23] indicated that selectivity estimation is crucial to support

several types of XML query, especially those that contains wildcards or logical operators. They proposed

combining prime number labeling and synopsis modeling for answering these queries.

2.2. Review on Existing Mapping Schemes

 Mapping schemes are essential to transform XML into relational storage. These schemes can be

grouped into path-based, edge-based and node-based technique. Zhu et al. [11] proposed Mini-XML, which

is a path-based mapping scheme. Structural relations of Mini-XML consist of “(Level,[P-pathId, S-order]),

where Level indicates the depth of the current node, P-pathId is the path id of direct parent node, and S-order

is the position of current leaf node in direct node”. Root label is (0,[0,1]). After the mapping process, there
are two mapping tables namely PathTable and LeafTable. The PathTable as shown in Table 1, is used to keep

all path information of inner nodes, while the LeafTable as shown in Table 2, is used to keep leaf nodes

information. The authors compared the performance of Mini-XML against s-XML (citation), which indicated

that Mini-XML has better performance and better storage space as well as more scalable to support huge

XML data.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

ORD-GAP: a hybrid-based labeling schemes to support XML dynamic updates (Aisyah Amin)

1599

Table 1. Partial View of PathTable

Table 2. Partial View of LeafTable

In another approach, Qtaish and Ahmad [24] proposed XAncestor, which is also a path-based

mapping technique. XAncestor contains of XtoDB, which is a mapping algorithm, and XtoSQL, which is a
query retrieval algorithm and Fixed RDB, which is an integrated solution. The beauty of XAncestor approach

is mapping of XML node into RDB without having the needs to map the entire document. This means that

only ancestor path will be map into RDB whereas, the whole documents that consist of leaf-node and inner-

nodes will be ignored. Thus, it reduces the storage space. The algorithm of XAncestor helps to keep the P-C

and A-D relationships in translating SQL queries. Figure 3 illustrates in the architecture of XAncestor.

Ancestor_Path of XAncestor Scheme and Leaf_Node of XAncestor Scheme as shown in Table 3 and 4.

Figure 3. XAncestor mapping approach [20]

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 3, June 2020 : 1596 - 1606

1600

Table 3. Ancestor_Path of XAncestor Scheme

Table 4. Leaf_Node of XAncestor Scheme

3. RESEARCH METHODOLOGY

3.1. The Architecture Diagram

There framework consists of three main components: XML Parser, XML Encoder, and XML

Mapper as shown in Figure 4. Firstly, the uploaded XML document will undergo XML Parser for well-

formedness checking, and get validated before data exchange take place. We employed the Simple API for

XML (SAX) parser for this. In XML Encoder, XML documents are encoded as a set of streams labeled with

our proposed labeling scheme (describe in the next section). In XML Mapper, the XML data is mapped into

RDB.

Figure 4. The Proposed Architecture

3.2. Proposed Labeling Scheme in XML Enconder
The labeling scheme is named as ORD-GAP, which comes after the approach ORDPATH by

reserving gap for future insertion. The initial labeling of ORD-GAP is computed based on depth-first

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

ORD-GAP: a hybrid-based labeling schemes to support XML dynamic updates (Aisyah Amin)

1601

traversal in a form of a (s-e)l, where s and e are the start and end of the range, and l represents the level of the

node. The s and e are computed based on the gap, which is result of Σ(maxfan-out + maxdepth). Figure 5

shows the partial of SigmodRecord dataset annotated with ORD-GAP. Firstly, the gap must be calculated. In

this sample, the tree has the largest fan-out (maxfan-out) of 4 and deepest level (maxdepth) of 6. As such, the

gap is 10.

The root node begins with 1 (for the s). Subsequently, the tree will be annotated based on depth-first

traversal. As such, the s for the succeeding node, ‘issue’, will be assigned with the previous node’s s added

with the gap (in this case, it is 1+10). This is followed by ‘volume’, which will be assigned as 21 (11+10) for

the s label. Once a leaf has been reached, the e will then be generated by adding the previous running number

of s with the gap. For example, take a look into the first leaf node reached. This node has the s label of 31,
thus, the e label computed will be 41. Conversely, if the node is not a leaf node, it’s e label will be computed

by adding the e label of the rightmost child with the gap based on the depth-first traversal.

Figure 5. The initial labeling of ORD-GAP

Figure 6 shows the pseudocodes for ORD-GAP. Figure 6(a) outlines the GetGap function. It shows

how the “gap” is calculated. The algorithm takes a node and the next level of the current node as input. By
traversing the entire child under the particular node, it will be able to count the maximum number of child,

which will then be computed as the maximum fan-out. Similarly, the maximum level will be computed as the

maximum depth of the tree.

Figure 6(b) shows the AssignLabel function. Based on the “gap” calculated from GetGap function

described earlier, the algorithm has the parent node, the current range, and the current level as the input.

Then, it will assign the start of the label as the current range, as well as the current level. Based on depth-first

 (1 – 811) 0

(11-641) 1

(21-51) 2 (661-691) 2

(651-801) 1

(61-91) 2 (101-631) 2 (701-731) 2

(741-791) 2

(111-341) 3

(121-151) 4
(161-191) 4 (201-231) 4 (241-331) 4

(351-621) 3

(361-391) 4 (401-431) 4 (441-471) 4 (481-611) 4

(251-281) 5 (291-321) 5
(531-561) 5

(571-601) 5

(751-761) 3 (771-781) 3

(491-521) 5

11

(31-41) 3

1

(71-81) 3

11 1

(711-721) 3(671-681) 3

SigmodRecord

Architecture of

Future Database

Systems
30 44

Lawrence

A.Rowe

Michael

Stonebraker

Error in ‘Process

synchronization

in Database

System’

Philip

A.Berstein

Marco
A.Casanova

Nathan
Goodman

9

29

(131-141) 5

(171-181) 5

(211-221) 5

(371-381) 5

(411-421) 5

(451-461) 5

(261-271) 6 (301-311) 6
(501-511) 6 (541-551) 6 (581-591) 6

issue issue

volume volumenumber numberarticles articles

article article article article

author author
author author author

title titleinitPage initPageendPage endPageauthors authors

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 3, June 2020 : 1596 - 1606

1602

traversal, it will first traverse the child nodes, and assign each node with the start and level (see Line 10).

When the leaf node is reached, it will then assign the end (which is the sum of start and “gap”). This process

repeats until each node is labelled.

(a) (b)

Figure 6. Algorithm for (a) Function AssignLabel (b) Function GetGap

3.3. Proposed Mapping Scheme in XML Mapper

While assigning the ORD-GAP labeling, the XML tree is mapped into RDB. Table 5 and Table 6
depict the mapped result. Basically, the iTable and tTable are constructed to store the internal node and text

node respectively.

Table 5. iTable (Parent Table)
Start End Level Pstart Value
251 281 5 241 author

291 321 5 241 author

491 521 5 481 author

531 561 5 481 author

571 601 5 481 author

121 151 4 111 title

161 191 4 111 initPage

201 231 4 111 endPage

241 331 4 111 authors

361 391 4 351 title

401 431 4 351 initPage

441 471 4 351 endPage

481 611 4 351 authors

111 341 3 101 article

351 621 3 101 article

751 761 3 741 article

771 781 3 741 article

21 51 2 11 volume

61 91 2 11 number

101 631 2 11 articles

661 691 2 651 volume

701 731 2 651 number

741 791 2 651 articles

11 641 1 1 issue

65 801 1 1 issue

1 811 0 - SigmodRecord

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

ORD-GAP: a hybrid-based labeling schemes to support XML dynamic updates (Aisyah Amin)

1603

The A-D relationship is determined with the following formula:

1. if(A(s) < D(s) < A(e)).

Example 1: Let node1 be volume (21-51)2 and node2 be SigmodRecord (1-811)0, (SigmodRecord

(1) < volume (21) < SigmodRecord (811)). As such, node1 and node2 has A-D relationship.

Table 6. tTable (Child Table)
Start End Level Pstart Value

261

271

6

251

Lawrence A.Rowe

301 311 6 291 Michael Stonebraker

501 511 6 491 Philip A.Berstein

541 551 6 531 Marco A.Casanova

581 591 6 571 Nathan Goodman

131 141 5 121 Architecture of Future
Database Systems

171 181 5 161 30

211 221 5 201 44

371 381 5 361 Error in ‘Process
synchronization in
Database System’

411 421 5 401 9

451 461 5 441 29

31 41 3 21 11

71 81 3 61 1

671 681 3 661 11

711 721 3 701 3

The proposed approach supports all structural relationships which are P-C, A-D, and sibling.

The P-C relationship is determined with the following formula:

2. if (P(s) < C(s) < P(e)) and (C(level) – P(level) = 1)
3. Pstart for C == Start for P (Mapping Scheme)

The first criteria is the range, which is similar to the criteria for A-D relationship. However, it is

essential to check for the level difference between the two nodes; if the difference is 1, then, the two nodes

are having P-C relationship. It can also be determined easily from the table by using PStart value.

Example 2: Let node1 be volume (21-51)2 and node2 be issue (11-641)1, (issue (11) < volume (21)

< issue (641) and volume (2)-article(1)=1). As such, node1 and node2 has P-C relationship.

To determine for the sibling relationship, if the nodes have the same PStart, they are having sibling

relationship.

Example 3: Let node1 be volume (661-691)2 and node2 be number(701-731)2. From iTable, both

have PStart ‘651’. As such, node1 is a sibling of node2.

3.4. Support for Dynamic Updates

The dynamic updates are supported in the proposed approached as there is no re-labeling required.

For the updates due to insertion, we apply the ORDPATH labeling scheme. Insertion consists of inserting

between the nodes, insert into the right-most and left-most nodes. For insertion involved in in-between nodes

and insertion into the right-most nodes, the e value on the left sibling will be used as the prefix to the

ORDPATH label. Similarly, insertion into the left-most requires the left-most sibling s value.

Figure 7 shows the example of the three types of insertion. The dotted lines and dotted circles

indicate the insertion of nodes. As shown in Figure 7, the left-most insertion of a subtree on the second level,

will produce a label of (21.1)2, followed by its child with label (21.1.1)3, and descendant with label

(21.1.1.1)4 respectively. For the rightmost insertion, the s value is (791.1)2 as it uses the e values on

the left sibling.

Meanwhile, for the insertion in-between nodes, it uses the e value of the left node (641.1)2, followed
by its two children with label (641.1.1)2 and (641.1.2)2. In a way, the structure of the label remains, and the

retrieval of relation between nodes still works with the insertion node.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 3, June 2020 : 1596 - 1606

1604

Figure 7. The proposed approach labeling scheme for insertion

4. EXPERIMENTAL EVALUATIONS AND PRELIMINARY RESULTS

In this section, the performance of the proposed approach was compared to other approaches using

the dataset obtained from University of Washington repository [25] as this is the standard datasets for

benchmarking. For the preliminary evaluation, we have only conducted experimental based on storing time,

i.e., the data loading time. The other evaluation on the query response time will be carried out in our

future work.

Table 7 shows the details of Yahoo.xml, SigmodRecord.xml and Dblp.xml datasets. The experiment
was performed on a 3.40 GHz Intel (R) Core(TM) i7-3770 CPU, with 8.00 GB RAM on a Windows 7 Home

Premium. In order to obtain a better consistency, the evaluations were executed for three times on each test

case. The results obtained are then computed as the average of these three consecutive runs. Table 8 shows

the insertion result on the three selected datasets.

From the result, it is observed that generally ORD-GAP outperformed the rest of the approaches in

terms of the data loading time by 66% better as compared to ORDPATH, and 56% better as compared to ME

labeling. This is due to the reason that integer computation is faster as compared to string (ORDPATH). ME

labeling is also integer-based, yet, it is slower as multiplication calculation is needed to compute the label.

Table 7. Description of XML Datasets
Filename Description Size Elements Attributes Max-Depth Avg-depth

Yahoo .xml Yahoo auction data 24KB 342 0 5 3.76608

SigmodRecord.xml SIGMOD Record in XML 467KB 11526 3737 6 5.14107

Dblp.xml DBLP Bibliography 127MB 3332130 404276 6 2.90228

Table 8. Loading Time of the Approaches

Dataset ME Labeling (ms) ORDPATH (ms) ORD-GAP (ms)

Yahoo.xml (24KB) 829 967 432

SigmodRecord.xml (467KB) 15241 20581 6224

Dblp.xml (127MB) 4679892 6551554 1802553

 (1 – 811) 0

(11-641) 1

(21-51) 2 (661-691) 2

(651-801) 1

(61-91) 2 (101-631) 2 (701-731) 2
(741-791) 2

(111-341) 3

(121-151) 4
(161-191) 4 (201-231) 4 (241-331) 4

(351-621) 3

(361-391) 4 (401-431) 4 (441-471) 4 (481-611) 4

(251-281) 5 (291-321) 5
(531-561) 5

(571-601) 5

(751-761) 3 (771-781) 3

(491-521) 5

11
(31-41) 3

1
(71-81) 3

11 1
(711-721) 3(671-681) 3

SigmodRecord

Architecture

of Future

Database

Systems

30 44

Lawrence

A.Rowe

Michael

Stonebraker

Error in

‘Process

synchronizati

on in

Database

System’

Philip

A.Berstein

Marco
A.Casanova

Nathan
Goodman

9
29

(131-141) 5

(171-181) 5

(211-221) 5

(371-381) 5

(411-421) 5

(451-461) 5

(261-271) 6
(301-311) 6 (501-511) 6 (541-551) 6

(581-591) 6

issue issue

volume volumenumber numberarticles articles

article article article article

author author
author author author

title titleinitPage initPageendPage endPageauthors authors

21.1

(21.1.1)3

(21.1.1.1)4

791.1

(791.1.1)3

(791.1.1.1)4

641.1

(641.1) 2 (641.1.2) 2

(641.1.1) 3
(641.1.1.2) 3

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

ORD-GAP: a hybrid-based labeling schemes to support XML dynamic updates (Aisyah Amin)

1605

5. CONCLUSION AND FUTURE WORKS

In this paper, we have reviewed some existing works on labeling and mapping schemes.

Subsequently, we have proposed our labeling scheme named ORD-GAP, which is persistent to re-labeling, as

this approach extend the ORDPATH labeling to cater for any dynamic updates. In addition, preliminary

experimental evaluation has shown that ORD-GAP works well to transform XML into RDB storage in terms

of the loading time. In our future works, we will further experiment with other types of datasets (in terms of

size, structure of the dataset, the depth level, and so on). In addition, the key criterions for good database are,

it should be able to support storage and retrieval efficiently. Thus, we will also evaluate the time taken to

retrieve various types of simple and complex queries.

ACKNOWLEDGEMENTS

This work is supported by the funding of TM R&D from the Telekom Malaysia, Malaysia.

REFERENCES
[1] K. Schweinsberg, and L. Wegner, "Advantages of complex SQL types in storing XML documents", Future

Generation Computer Systems, 2016 (in press).
[2] G.Z. Qadah, "Indexing techniques for processing generalized XML documents", Computer Standards & Interfaces,

vol. 49, pp. 34-43, 2017.
[3] S.C. Haw, and C.S. Lee, "Node Labeling Schemes in XML Query Optimization: A Survey and Open Discussion",

IETE Technical Review, vol. 26 (2), pp. 89-101, 2009.
[4] N. Ferro, and G. Silvello, "Descendants, ancestors, children and parent: A set-based approach to efficiently address

XPath primitives", Information Processing & Management, vol. 52(3), pp. 399-429, 2016.
[5] J.Kopke, "Annotation paths for matching XML-Schemas", Data & Knowledge Engineering, 2017 (in press).
[6] E. Barros, et al., "LCA-based algorithms for efficiently processing multiple keyword queries over XML streams",

Data & Knowledge Engineering, vol. 103, pp.1-18, 2016.
[7] Z. Qin, et al., "Efficient XML query and update processing using a novel prime-based middle fraction labeling

scheme", China Communications, vol. 14(3), pp. 145-157, 2017.

[8] S. Subramaniam, and S.C. Haw, "ME Labeling: A Robust Hybrid Scheme for Dynamic Update in XML
Databases", IEEE International Symposium on Telecommunication Technologies, 2014.

[9] J. Liu, et al., “Efficient labeling scheme for dynamic XML trees”,. Information Sciences, vol. 221,
pp. 338-354, 2013.

[10] P. Fraigniaud, and A. Korman. "An Optimal Ancestry Labeling Scheme with Applications to XML Trees and
Universal Posets", Journal of the ACM, vol.63 (1), pp. 6:1-6:30, 2016.

[11] H. Zhu, et al., "Mini-XML: An efficient mapping approach between XML and relational database", IEEE/ACIS
16th International Conference on Computer and Information Science, 2017.

[12] T.A. Ghaleb, and S.Mohammed, "A Dynamic Labeling Scheme Based on Logical Operators: A Support for Order-

Sensitive XML Updates", Procedia Computer Science, vol. 57, pp. 1211-1218, 2015.
[13] J. Liu, and X.X. Zhang. "Dynamic labeling scheme for XML updates", Knowledge-Based Systems, vol. 106,

pp. 135-149, 2016.
[14] S.C. Haw, and A. Amin, "Node Indexing in XML Query Optimization: A Review", Indian Journal of Science and

Technology, vol. 8(32), pp. 1-9, 2015.
[15] C. Zhang, et al., "On supporting containment queries in RDB management systems", ACM SIGMOD International

Conference on Management of Data, pp. 425-436, 2001.
[16] S. Mohammad, and P. Martin, "LLS: Level-bases Labeling Scheme for XML Databases", Conference of the Center

for Advanced Studies on Collaborative Research, 2010, pp. 115-127.
[17] I. Tatarinov, et al., "Storing and Querying Ordered XML using a RDB System", ACM SIGMOD, pp. 204-15, 2002.
[18] L. Fu, and X, Meng, "Triple Code: An Efficient Labeling Scheme for Query Answering in XML Data", Web

Information System and Application Conference, pp. 42-47, 2013.
[19] Y. He, "A Novel Encoding Scheme for XML Document Update-supporting", International Conference on Advances

in Mechanical Engineering and Industrial Informatics, pp. 1844-1849, 2015.
[20] D. Gopinathan, and K. Asawa, "New Path Based Index Structure for Processing CAS Queries over

XML Database", Journal of Computing and Information Technology, vol. 25(3), pp. 211-225, 2017.

[21] J. Ahn, et al.,"A dynamic and parallel approach for repetitive prime labeling of XML with MapReduce", The
Journal of Supercomputing, vol. 73(2), pp. 810-836, 2017.

[22] D.H. Sun, and S.C. Hwang, "A labeling methods for keyword search over large XML documents", Journal of
KIISE, vol. 41(9), pp. 699-706, 2014.

[23] S. Mohammed, A.F. Barradah, E.M. El-Alfy, "Selectivity estimation of extended XML query tree patterns based on
prime number labeling and synopsis modeling", Simulation Modelling Practice and Theory, vol. 64,
pp. 30-42, 2016.

[24] A. Qtaish, and K. Ahmad, "XAncestor: An efficient mapping approach for storing and querying XML documents in

relational database using path-based technique", Knowledge-Based Systems, vol. 114, pp. 167-192, 2016.
[25] UW, 2018. http://www.cs.washington.edu/research/xmldatasets/www/repository.html

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 3, June 2020 : 1596 - 1606

1606

BIOGRAPHIES OF AUTHORS

Aisyah Mohd Amin is a Master student at Multimedia University. Her research field are XML
node labeling, relational databases, dynamic updates and query optimization.

Su-Cheng Haw is Associate Professor at Faculty of Computing and Informatics, Multimedia
University, where she leads several funded research on the XML databases. Her research
interests include XML databases, query optimization, data modeling, semantic web, ontology,

data management, and data warehousing. She has published more than 120 articles in reputable
journals and conferences.

Samini Subramaniam is a lecturer and a PhD student at Multimedia University. Her research
areas are XML technologies, relational databases, query optimization, distributed query
processing and IoT. Samini has led a few funded projects on XML and IoT. Samini is a certified
trainer and has been providing trainings on SQL and NoSQL databases to various organizations.
She is also an active author who has published articles in many reputable conferences and
journals.

