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 A new four-dimensional continuous-time system is dealt in this paper. The 
system employs eight simple terms involving nonlinear terms. The 
fundamental characteristics of the system are analyzed by means of its 
equilibrium points, dissipativity, wave form analysis, stability analysis, 
Lapiynuov Exponents and Kaplan-Yorke dimension. The maximum value of 

Lapiynuov exponent is obtain as (1.660748) and Kaplan-Yorke dimension 
obtain as (3.143433471), that show the system is unstable and highly chaotic. 
As well, an optimal controller by adaptive control strategy is established to be 
system trajectories are stable. Finally, adaptive synchronization of new system 
is clarified. Tables are made to compare the graphical and theoretical results 
of the new system in two cases before and after control. 
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1. INTRODUCTION  

In decay years, research on chaotic phenomena has increased dramatically due to the increasing limits 

of chaotic applications in science and engineering systems [1]. The phenomenon of chaos is caused by 

sensitivity of opponents to perturbation structural parameters and initial conditions of a few categories of 

dynamic systems [2-5]. Chaotic signals characterize by random-like nature, broadband spectrum and are 

aperiodic [6, 7]. The conditions of the chaotic system that should be satisfied; First, sensitivity to disturbances 

in its initial conditions which should result in unpredictability behavior on long time; second, it's not a 
transitional topology; and third, in phase space the chaotic orbits should be dense [8-9]."Among some of the 

attractors of chaos evolved in the researches are the, Chen's [10], 4-wing attractor [11], Sundarapandian-

Pehlivan [12], Rabinovich system"[13-15]. A fundamental properties of chaotic system it possess at least one 

Lapiynuov exponent greeater than zero. A system that has more than one positive lapiynuov exponents is highly 

chaotic and becomes extremely sensitive to tiny disturbances in the dynamics of his system [16-17]. Because 

of the controlability and synchronizability chaos control becomes widespread attention from researches is an 

indication of benefit in completely different designs such as secure communications, artificial intelligence, and 

biometric identification [18-20]. One of the principle of lapiynuov stability can effectively settled the 

dissipative systems [21-24].  

This paper consists of seven sections: In Section 2, we presented the new system; it is mainly consist 

of eight simple terms include two nonlinear terms. In Section 3, we investigated basic characteristics of the 

new system by means that of equilibrium points, stability, dissipativity, Lapiynuov exponents, Kaplan-Yorke 
dimension and diagrams. In Section 4, we infer the results of adaptive control of the highly chaotic system with 

unknown parameter. In Section 5, we made tables to compare the system before control & after control. In 

section 6, the concept of Adaptive synchronization technique and its results of the identical chaotic systems 

with an unknown parameter. In Section 7, we presented the conclusions. 
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2. SYSTEM DESCRIPTION  

The new four-dimensional system has the following equations: 

 

�̇�1=𝜌(𝑥2 −  𝑥1) 

�̇�2= 𝑎𝑥1 − 𝛿𝑥1𝑥3 + 𝑥4                                                                 (1)  

�̇�3= 𝜑𝑥1𝑥2 − 𝑥3 

�̇�4= −𝑘𝑥1 
 

 𝑥1, 𝑥2, 𝑥3, 𝑥4 are state variables and 𝜌, 𝑎, 𝛿, 𝜑 , 𝑘 are constants. 

 

Where 𝑎 = 296.5, 𝜌 = 10, 𝜑 = 10, 𝛿 = 40, 𝑘 = 8                                              (2)          

 

 

3. SYSTEM ANALYSIS  

To analyze a dynamical system first we have to look at its equilibrium points by setting (1) equal to 

zero, this results only one equilibrium point and it is the origin point 𝑂 = (0,0,0,0). 
 

3.1.   Stability analysis 

3.1.1. Characteristic equation roots 

The system to be stable it is necessary and sufficient condition that the eigenvalues of its characteristic 

equation have negative real parts. The Jacobian matrix of new system (1) through 𝐸 = (0,0,0,0) is given as: 

 

J= [

−10   10   0    0
296.5  0    0   1
 0     0  − 1   0
−8    0     0    0 

] 

 

The characteristic equation is: 

 

λ4 + 11λ3 − 2955 λ2 − 2885λ + 80 = 0                                 (3)      
 
 

The roots of (3) are: 

 

λ1 = −1  
λ2 = −59.693  
λ3 = 0.026984 

λ4 = 49.666 
 

Therefore, the new system is unstable. 

 

3.1.2. Routh stability criterion:  

The Routh stability test states that the system is stable (all poles in OLHP (Open Loop Half plane)) if 

and only if all the elements in the first column of the Routh array are strictly positive. In addition the number 

of poles not in the OLHP is equal to the number of sign changes in the first column"[25]. Table 1 refer to Routh 

stability test. 

 

𝑎4 = 1 

𝑎3 = 11 

𝑎2 = −2955  

𝑎1 = −2885 

𝑎0 = 80 
 

𝑏2 = 𝑎2 −
𝑎4𝑎1

𝑎3

= −2692.727 

𝑏0 = 𝑎0 −
𝑎4(0)

𝑎3

= 80 

𝑐1 = 𝑎1 −
𝑎3𝑏0

 𝑏2 

= −2884.67 
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Table 1. Routh array table of system (1) 
𝜆4 1 −2955 80 

𝜆3 11 −2885 0 

𝜆2 −2692.727 80 0 

𝜆1 −2884.67 0 0 

𝜆0 80 0 0 

 

 
 System (1) is unstable, since there are two elements in the first column of Table 1 are less than zero.  

 

 3.1.3. Lapiynuov function 

Assume that the Lapiynuov function of system (1) is:  

 

 𝑉(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
1

2
(𝑥1

2  + 𝑥2
2 + 𝑥3

2 + 𝑥4
2) 

 

�̇� (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥1𝑥1̇ + 𝑥2𝑥2̇ + 𝑥3𝑥3̇ + 𝑥4𝑥4̇                                         (4) 
 

�̇� (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 306.5𝑥1𝑥2 − 30𝑥1𝑥2𝑥3 − 10𝑥1
2 − 𝑥3

2 + 𝑥4(𝑥2 − 8𝑥1) 

 

Since �̇�(𝑥1, 𝑥2, 𝑥3, 𝑥4) > 0 , hence new system (1) is unstable. 
 

3.2.  Dissipativity  

 

Let, 𝑓1 =
𝑑𝑥1

𝑑𝑡
 , 𝑓2 =

𝑑𝑥2

𝑑𝑡
 , 𝑓3 =

𝑑𝑥3

𝑑𝑡
 and 𝑓4 =

𝑑𝑥4

𝑑𝑡
 . 

 

The vector field V that we get:  

 

(𝑥1̇, 𝑥2̇, 𝑥3̇, �̇�4)𝑇 = (𝑓1 , 𝑓2 , 𝑓3, 𝑓4)𝑇 
 

Then the divergence of V on 𝑅4 leads to: 

 

∇.  (𝑥1̇, 𝑥2̇, 𝑥3̇, �̇�4)𝑇 =
𝜕𝑓1

𝜕𝑥1

+
𝜕𝑓2

𝜕𝑥2

+
𝜕𝑓3

𝜕𝑥3

+
𝜕𝑓4

𝜕𝑥4

= −(𝜌 + 1) = 𝑓 

 

Note that 𝑓 = −(𝜌 + 1) = −11, for all positive values of 𝜌 that greater than zero, (1) is dissipative system. 

The exponential rate is: 

 
𝑑𝑉

𝑑𝑡
= 𝑓𝑉 ⇒ 𝑉(𝑡) = 𝑉0𝑒𝑓𝑡 = 𝑉0𝑒−11𝑡  

 

The volume element 𝑉0 from above equation is contracted by the flow into 𝑉0𝑒−11𝑡 at time t. 

 

3.3. Graphical and numerical analysis 
The fourth and fifth order Runge-Kutta method is used to solve system (1). With initial values 

𝑥|𝑥1(0),𝑥2(0),𝑥3(0),𝑥4(0)
= [4,1,4,2].  

 

3.3.1. Wave form of new system (1) 

The wave-form 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) and 𝑥4(𝑡) for system (1) is characterized with aperiodic structure, 
shown in Figure 1, which is the basic feature of chaotic system. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 1. The wafe form of new system (1), (a): 𝑥1 versus time; (b): 𝑥2 versus time; (c): 𝑥3versus time; (d): 

𝑥4 versus time 

 

 

3.3.2. Phase portrait of the system (1)  
In this paragraph, Figure 2 and Figure 3 shows chaotic strange attractor for new system (1) in 

(𝑥1, 𝑥2, 𝑥4) space, and chaotic strange attractor for new system (1) in (𝑥1, 𝑥4) plane. 

 

 

  
 

Figure 2. New system attractor in (𝑥1, 𝑥2, 𝑥4) 

 

Figure 3. New system attractor in (𝑥1, 𝑥4) 
 

The new system exhibit chaotic attractor since the orbit appears dense in each graph. 

 

 

3.4.   Lapiynuov exponent and lapiynuov dimension  
Generally the Lapiynuov exponent refers to average exponential rates of near trajectories that 

divergence in phase space. The new system said to be chaotic if there exist one positive Lapiynuov exponent 

at least. The values of lapiynuov exponents are: (𝐿1 = 1.660748, 𝐿2 = 0.149599 , 𝐿3 = −0.068474 and 𝐿4 =
−12.144118). Therefore, the Lapiynuov dimension "Kaplan-Yorke dimension" of this system is: 

 

𝐷𝐿 = 3 +
𝐿1 + 𝐿2 + 𝐿3

|𝐿4|
= 3.143433471  

 

Figure 4 show that the new system (1) is Highly Chaotic. 
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Figure 4. Lapiynuov exponent (𝐿1, 𝐿2, 𝐿3, 𝐿4) of new system (1) 
 

 

4. ADAPTIVE CONTROLLER DESIGN 

4.1.   Results theoretically  

An adaptive control strategy is design to stabilize highly chaotic system (1) with parameter 𝑎 which 

is unknown as follows 

 

�̇�1=10(𝑥2 −  𝑥1) + 𝑢1 

�̇�2= 𝑎𝑥1 − 40𝑥1𝑥3 + 𝑥4 + 𝑢2                                                               (5)     

�̇�3= 10𝑥1𝑥2 − 𝑥3 + 𝑢3 

�̇�4= −8𝑥1 + 𝑢4 

where [𝑢1, 𝑢2, 𝑢3, 𝑢4]𝑇 are feedback controllers. 
 

Now, we consider the subsequent adaptive control laws to make sure that the controlled system (5) 

converges asymptotically to the origin.  

 

𝑢1 = −10(𝑥2 −  𝑥1) − 𝜇1𝑥1 

𝑢2 = −�̂� 𝑥1 + 40𝑥1𝑥3 − 𝑥4 − 𝜇2𝑥2                                                           (6) 

𝑢3 = −10 𝑥1𝑥2 + 𝑥3 − 𝜇3𝑥3 

𝑢4 = 8 𝑥1 − 𝜇4𝑥4 
 

Where 𝜇1,  𝜇2 , 𝜇3 𝑎𝑛𝑑 𝜇4 are constants, �̂� is estimater of the parameter a. 

Substituting the controller (6) into (5), we get 

 

�̇�1=−𝜇1𝑥1 

�̇�2= (a −�̂� )𝑥1 − 𝜇2𝑥2                                                                      (7) 

�̇�3= −𝜇3𝑥3 

�̇�4= −𝜇4𝑥4 

 

Let the error of estimating parameter is 

 

                𝑒𝑎 = 𝑎 − �̂�                                                                 (8) 

 

Using (8), system (7) can be written as  

 

�̇�1=−𝜇1𝑥1 

�̇�2= 𝑒𝑎𝑥1 − 𝜇2𝑥2                                                                            (9) 

�̇�3= −𝜇3𝑥3 

�̇�4= −𝜇4𝑥4 

 

The Lapiynuov approach to deriving the update law is used to modify the parameter estimate �̂�. 

The quadratic lapiynuov function is considered as: 

 

 𝑉(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
1

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 + 𝑒𝑎

2)                                            (10) 
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which is a positive-definite on 𝑅5 . 

 

Also              𝑒�̇� = −�̇̂�                                                                (11)      
            

Differentiate V & substituting (9) and (11), we get: 

 

�̇� = −𝜇1𝑥1
2 − 𝜇2𝑥2

2 − 𝜇3𝑥3
2 − 𝜇4𝑥4

2 − 𝑒𝑎  [�̂� ̇ − 𝑥1𝑥2]                                        (12) 
 

Assume that  

 

              �̇̂� = 𝑥1𝑥2 + 𝜇5 𝑒𝑎                                                             (13) 
 

where 𝜇5 is greater than zero. 

 

Substitute (13) into (12), we get 

  

�̇� = −𝜇1𝑥1
2 − 𝜇2𝑥2

2 − 𝜇3𝑥3
2 − 𝜇4𝑥4

2 − 𝜇5𝑒𝑎
2                                                (14) 

 

which is negative-definite on 𝑅5 

So, by Lapiynuov stability, Eigenvalues and Routh array criterion we get the result described below. 

 

Proposition1. By adaptive control (6), where �̇̂� = 𝑥1𝑥2 + 𝜇5 𝑒𝑎  and  𝜇1, 𝜇2,  𝜇3,  𝜇4 𝑎𝑛𝑑 𝜇5 are positive 

constant, The chaotic system (5) is stabilized for x(0)∈ 𝑅4. 

 
 

4.2.  Simulation and numerical results  

Simulation for controlled highly chaotic system (7) was done with  𝑥|𝑥1(0),𝑥2(0),𝑥3(0),𝑥4(0)
= [−4,5,2,1] 

and [𝜇1, 𝜇2, 𝜇3, 𝜇4] = [30,40,50,10]. Controlled state trajectories of new system (1), shown in Figure 5. 

 
 

 
 

Figure 5. The behavior of state variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 for the controlled system (7) 

 

 

5. A COMPARISON TABLES BEFORE AND AFTER CONTROL 

A comparison of eigenvalues shown in Table 2 and Routh array criteria shown in Table 3 of new 
system (1) before and after control at equilibrium point (0,0,0,0). 

 

 

Table 2. Eigenvalues of new system (1) 
Equilibrium point Before Control After Control 

 

(0,0,0,0) 

𝝀𝟏 = −1    𝝀𝟐 =
−59.693 

𝝀𝟑 = 0.026984 

𝝀𝟒 = 49.666 

𝝀𝟏 = −40 

𝝀𝟐 = −30 

𝝀𝟑 = −50 

𝝀𝟑 = −10 
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Table 3. Calculated values of Routh array criteria of new system (1) 
Equilibrium point 𝝀 Before Control After Control 

 

 

(0,0,0,0) 

𝜆4 

𝜆3 

𝜆2 

𝜆1 

𝜆0 
 

1 −2955 80 

11 −2885 0 

−2692.727 80 0 

−2884.67 0 0 

80 0 0 
 

1 4820 60000 

130 36800 0 

4536.923 60000 0 

35080.77 0 0 

60000 0 0 
 

 

 

6. ADAPTIVE SYNCHRONIZATION STRATEGY 

6.1. Theoretical results 
In this section we explain Adaptive synchronization strategy of highly chaotic system when the 

parameter 𝑎 is unknown. 

As a drive system, we consider the highly chaotic dynamics represented by  

 

�̇�1=10(𝑥2 −  𝑥1) 

�̇�2= 𝑎𝑥1 − 40𝑥1𝑥3 + 𝑥4                                                                    (15)     

�̇�3= 10𝑥1𝑥2 − 𝑥3 

�̇�4= −8𝑥1 
 

where a is the unknown system parameter . 

For response system, we consider the controlled dynamics represented as 

 

�̇�1= 10(𝑦2 − 𝑦1) + 𝑢1 

�̇�2= 𝑎𝑦1 − 40𝑦1𝑦3 + 𝑦4 + 𝑢2                                                                (16) 

�̇�3= 10𝑦1𝑦2 − 𝑦3 + 𝑢3 

�̇�4= −8𝑦1 + 𝑢4 
 

Where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are the designed non-linear controllers and 𝑦𝑖, (𝑖 = 1,2,3,4) are the state variables. 
Adaptive Synchronization error given by  

 

𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖   , (𝑖 = 1, 2, 3, 4)                                            (17) 

 

Hence, the error dynamics:  

 

�̇�1=10(𝑒2 − 𝑒1) + 𝑢1 

�̇�2= 𝑎 𝑒1 − 40(𝑒1𝑒3 + 𝑥3𝑒1 + 𝑥1𝑒3) + 𝑒4 + 𝑢2                                                (18) 

�̇�3= 10(𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2) − 𝑒3 + 𝑢3 

�̇�4= −8𝑒1 + 𝑢4 

 

define adaptive control functions 𝑢1(𝑡), 𝑢2(𝑡),  𝑢3(𝑡) and 𝑢4(𝑡) as: 

 

𝑢1= −10(𝑒2 − 𝑒1) − 𝜇1𝑒1 

𝑢2= −�̂� 𝑒1 + 40(𝑒1𝑒3 + 𝑥3𝑒1 + 𝑥1𝑒3) − 𝑒4 − 𝜇2𝑒2                                             (19) 

𝑢3= −10(𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2) + 𝑒3 − 𝜇3𝑒3 

𝑢4 = 8𝑒1 − 𝜇4𝑒4 
 

where 𝜇1, 𝜇2, 𝜇3, 𝜇4 are positive constant, and �̂� is the estimater of parameter a. 

Substituting (19) into (18), we get the dynamic of synchronization error as: 

 

�̇�1= −𝜇1𝑒1 

�̇�2= (𝑎 − �̂�) 𝑒1 − 𝜇2𝑒2                                                                    (20) 

�̇�3= −𝜇3𝑒3 

�̇�4= −𝜇4𝑒4 

 

Now, the error of the parameter estimater is: 
 

 𝑒𝑎 = 𝑎 − �̂�                                                           (21) 
 

Substitute (21) into (20), we get 
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�̇�1= −𝜇1𝑒1 

�̇�2=   𝑒𝑎𝑒1 − 𝜇2𝑒2                                                                         (22) 

�̇�3= −𝜇3𝑒3 

�̇�4= −𝜇4𝑒4 

 

From the Lapiynuov approach to deriving the update law is used to modify the parameter estimate. 

The quadratic lapiynuov function is considered as: 
 

𝑉 =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2 + 𝑒4
2 + 𝑒𝑎

2)                                                        (23) 

 

which is positive definite on 𝑅5. 

 

Note that        �̇�𝑎 = −�̇̂�                                                                  (24) 
 

Differentiating 𝑉 on the trajectories of (22) and use (24), we obtain 

 

�̇� = −𝜇1𝑒1
2 − 𝜇2𝑒2

2 − 𝜇3𝑒3
2 − 𝜇4𝑒4

2 − 𝑒𝑎[�̂� ̇ − 𝑒1𝑒2]                                            (25) 
 

In (25), the estimated parameter is updated by: 

 

�̇̂� = 𝑒1𝑒2 + 𝜇5𝑒𝑎                                                                          (26) 
 

where the constant 𝜇5 is a positive. 
Substituting (24) into (23), we get 

 

�̇� = −𝜇1𝑒1
2 − 𝜇2𝑒2

2 − 𝜇3𝑒3
2 − 𝜇4𝑒4

2 − 𝜇5𝑒𝑎
2                                                   (27) 

 

Which is a negative on 𝑅5. 
 

Hence, by Lapiynuov stability [22], immediately the error of synchronization and the error of parameter 

estimate degeneration exponentially to zero. Thus, the following is proved. 

Proposition2. The identical chaotic systems, the drive (15) and the response (16) with unknown parameter 𝑎 

are synchronized for each initial value by adaptive control technique (19), where the estimated parameter given 

by (26) and the constant 𝜇𝑖, (𝑖 = 1,2,3,4,5) are possitive. 

 

6.2.  Numerical simulation and results  

Runge-Kutta method of order fourth was used to solve (15) & (16), and also solve the dynamic of 

synchronization error (20). The initial values of the drive system (15) as  𝑥|𝑥1(0),𝑥2(0),𝑥3(0),𝑥4(0)
= [2,15,10,3] 

and the response system (16) as 𝑦|𝑦1(0),𝑦2(0),𝑦3(0),𝑦4(0)
= [18,6,4,3] , parameter value as 𝑎 =  296.5 and 𝑘𝑖 = 4 

for 𝑖 = 1,2,3, 4. Adaptive synchronization of chaotic system shown in Figure 6, and convergent for system 

(20) shown in Figure 7. 

 
 

 
 

Figure 6. Trajectories by adaptive synchronization for drive system (15) and response system (16) 
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Figure 7. Convergence of trajectories for the dynamic of synchronization error (20) 

 

 

7. CONCLUSION  
This paper presents a consideration of a new four-dimension on continuous-time system with 

quadratic cross-product nonlinear terms, its solution through the fourth and fifth order Runge-Kutta method. 

The characteristics of the system analyzed by mean of equilibrium points, analysis of stability (such as 

Lapiynuov function, Routh criterion and characteristic equation roots) all these methods shows that the new 

system is unstable. The analysis of dissipativity shows that the new dynamical system is dissipative for all 

values of the parameters a,δ,φ,k and for the positive values of parameter ρ. Lapiynuov exponent, lapiynuov 

dimension "Kaplan-Yorke dimension" and analysis of wave-form presence the chaotic behaviors when the 

parameters taken as ρ =10, a=296.5,δ=40, φ=10, k=8 , and the maximum values of lapiynuov exponents for 

the system are 𝐿1=1.660748, 𝐿2==0.149599, 𝐿3==-0.068474 and 𝐿4==-12.144118, Lapiynuov dimension 

"Kaplan-Yorke dimension" of new system is 𝐷𝐿=2.22349544, that means the new system is highly chaotic. 
Furthermore, by adaptive control strategy we stabilized the highly chaotic system. Finally, adaptive 

synchronization was established for identical highly chaotic system with unknown parameter, so we got the 

synchronization error convergence to zero. Moreover; we compared graphical and theoretical results of the 

new system before and after control.  
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