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 For many years, approximation concepts has been investigated in view of 

neural networks for the several applications of the two topics. Researchers 
studied simultaneous approximation in the 2-normed space and proved 
essential theorems concern with existence, uniqueness and degree of best 
approximation. Here, we define a new 2-norm in 𝐿𝑝-space, with 𝑝 < 1,  
so we call it 𝐿𝑝 quasi 2- normed space (𝐿𝑝,2). The set of approximations is a 

space of feedforward neural networks that is constructed in this paper. 
Existence and uniqueness of best neural approximation for a function from 

𝐿𝑝,2 is proved, describing the rate of best approximation in terms of modulus 

of smoothness. 
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1. INTRODUCTION  

The first notes about simultaneous approximation was done by Dunham in [1]. He generated  

the classical Chebyshev approximation by approximating two continuous functions 𝑓+ and 𝑓−,  

with 𝑓+(𝑥) ≤ 𝑓−(𝑥), for all 𝑥 ∈ [𝑎, 𝑏], simultaneously. He also proved that his simultaneous approximation 

is equivalent to the classical one function Chebyshev approximation when 𝑓+ = 𝑓−. 

For more specification, Diaz and Mclaughlin [2] proved that the above problem is equivalent to  

the problem of approximating  
1

2
|𝑓+ + 𝑓−|. Also approximating two appropriate functions simultaneously is 

equivalent to approximating one function by elements of  a certain set 𝕊. Moreover, they defined the best 

simultaneous approximation 𝒮 to the set 𝕊 in [3] as follow 
 

inf
𝑠∈𝕊

sup
𝑓∈ℱ

‖𝑓 − s‖ = sup
𝑓∈ℱ

‖𝑓 − 𝒮‖,  

 

where ℱ is a set of uniformly bounded functions on [𝑎, 𝑏] and 𝕊 is a set of functions on [𝑎, 𝑏]. They proved 

that 𝒮 is equivalent to the best simultaneous approximation of two functions. The set ℱ varies among 

researchers, it is 𝐶[𝑎, 𝑏] in [4] and [5], the space of uniformly bounded functions in [6], Banach space in [7], 

weighted space [8], Lp spaces [4] or 2-normed space as in [9-16]. 
 The 2-normed space was firstly defined by Gahler in his paper  [9], and then generalized by Iseki in 

his paper [17]. This space provides a tool to deal with 2-structures. For the same porpuse, others defined  

quasi-normed , quasi-(2;p)-normed space and generalized each one (see [18, 19]). First, we define  

the 2-normed space generally from [1] 

Definition (1) A norm ‖ ∙,∙ ‖ : 𝑋 × 𝑋 → 𝑅+ is 2-norm on X if it satisfies the following conditions: 

[C1] ‖𝑥1, 𝑥2‖ = 0, if and only if 𝑥1, 𝑥2 are linearly dependent from X. . 

[C2] ‖𝑥1, 𝑥2‖ = ‖𝑥2, 𝑥1, ‖  , for all 𝑥1, 𝑥2 from X. 
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[C3] ‖𝛼𝑥1, 𝑥2‖ = |𝛼|‖𝑥1, 𝑥2‖ , for all 𝛼 ∈ 𝑅 and 𝑥1, 𝑥2 ∈ X 

[C4] ‖𝑥1 + 𝑥2, 𝑧‖ ≤ ‖𝑥1, 𝑧‖ + ‖𝑥2, 𝑧‖ , for all 𝑥1, 𝑥2, 𝑧 ∈ 𝑋. 
The space (X, ‖ ∙,∙ ‖) is called 2-normed space. Later, Park [18] substitute [C4] with the following 

condition 

[C4*] ‖𝑥1 + 𝑥2, 𝑧‖ ≤ 𝐶{‖𝑥1, 𝑧‖ + ‖𝑥2, 𝑧‖ }, for all 𝑥1, 𝑥2, 𝑧 ∈ 𝑋. 
 In this paper, we deal with 2-normed space with a special definition that deals with  

Lebesgue-integrable space 
 

𝐿𝑝[𝑎, 𝑏] = {𝑓: ∫ |𝑓(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
< ∞}  

 

 Through this paper, we refer 𝐿𝑝,2 to the space 𝐿𝑝[𝑎, 𝑏] × 𝐿𝑝[𝑎, 𝑏] in the following manner 

 

𝐿𝑝,2[𝑎, 𝑏] = {𝑓: ∫ |𝑓(𝑥)𝜑(𝑥)|𝑝𝑑𝑥 < ∞
𝑏

𝑎
, for every 𝜑 ∈ 𝐿𝑝} (1) 

 

Together with the non-neagative function ‖∙,∙‖𝑝 over the vector space 𝐿𝑝,2 as follow 

 

‖𝑓, 𝑔‖𝑝 = (∫ |𝑓(𝑥)𝑔(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
)

1 𝑝⁄

, (2) 

 

for any function 𝑓 and 𝑔 from 𝐿𝑝,2. The space 𝐿𝑝,2[𝑎, 𝑏] is a 2-normed space since it satisfies the following 

conditions 

[C1] ‖𝑓, 𝑔‖𝑝 = 0, if and only if 𝑓 and 𝑔 are linearly dependent functions from 𝐿𝑝,2. . 

[C2] ‖𝑓, 𝑔‖𝑝 = ‖𝑔, 𝑓‖𝑝 , for all 𝑓 and 𝑔 from 𝐿𝑝,2. 

[C3] ‖𝛼𝑓, 𝑔‖𝑝 = |𝛼|‖𝑓, 𝑔‖𝑝, for all 𝛼 ∈ 𝑅 and 𝑓, 𝑔 ∈ 𝐿𝑝,2. 

[C4] ‖𝑓 + 𝑔, 𝜑‖𝑝 ≤ 𝐶{‖𝑓, 𝜑‖𝑝 + ‖𝑔, 𝜑‖𝑝}, for all 𝑓, 𝑔, 𝜑 ∈ 𝐿𝑝,2. 

The space 𝐿𝑝,2[𝑎, 𝑏] is a 2-normed space since it satisfies the conditions in Definition(1). 

[C1] Let 𝑓, 𝑔 be two linearly dependent functions from 𝐿𝑝,2, with 𝑓 ≠ 𝑔 iff 〈𝑓, 𝑔〉 = 0, iff ‖𝑓, 𝑔‖𝑝 = 0. 

[C2] By (2), we have ‖𝑓, 𝑔‖𝑝 = ‖𝑔, 𝑓‖𝑝. 

[C3] Let 𝛼 ∈ 𝑅,  then ‖𝛼𝑓, 𝑔‖𝑝 = (∫ |𝛼𝑓(𝑥)𝑔(𝑥)|𝑝𝑏

𝑎
𝑑𝑥)

1

𝑝
= |𝛼| (∫ |𝑓(𝑥)𝑔(𝑥)|𝑝𝑏

𝑎
𝑑𝑥)

1

𝑝
, = |𝛼|‖𝑓, 𝑔‖𝑝 , 

[C4] Let 𝑓, 𝑔 ∈ 𝐿𝑝,2, since 0 < 𝑝 < 1, then there exists 𝐶 > 0 satisfies 

 

‖𝑓 + 𝑔, 𝜑‖𝑝 = (∫ |(𝑓 + 𝑔)(𝑥)𝜑(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
)

1

𝑝
  

≤ 𝐶 {(∫ |𝑓(𝑥)𝜑(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
)

1

𝑝
+ (∫ |𝑔(𝑥)𝜑(𝑥)|𝑝𝑑𝑥

𝑏

𝑎
)

1

𝑝
} 

= 𝐶{‖𝑓, 𝜑‖𝑝 + ‖𝑔, 𝜑‖𝑝}. 

 

 To continue our investigation for a neural best approximation, we need the following definitions that 

are related to convergence sequences of functions from 𝐿𝑝,2. 

Definition(2) A sequence of functions {𝑓𝑛}𝑛≥1 from 𝐿𝑝,2 is said to be Cauchy Sequence if and only 

if  

 

lim
𝑛,𝑚→∞

‖𝑓𝑛 − 𝑓𝑚 , 𝜑1‖𝑝 = 0,  

 

and 
 

lim
𝑛,𝑚→∞

‖𝑓𝑛 − 𝑓𝑚 , 𝜑2‖𝑝 = 0,  

 

for some independent functions 𝜑1 , 𝜑2 ∈ 𝐿𝑝,2. 

Definition(3) A sequence of functions {𝑓𝑛}𝑛≥1 from 𝐿𝑝,2 is said to be convergent to some 𝑓 ∈ 𝐿𝑝,2 if 

and only if 

 

lim
𝑛,𝑚→∞

‖𝑓𝑛 − 𝑓, 𝜑‖𝑝 = 0,  
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for all 𝜑 ∈ 𝐿𝑝,2. The following definitions give some useful properties to the space 𝐿𝑝,2, that we need later in 

the main results.  

Definition(4) The space 𝐿𝑝,2 is said to be complete if and only if every Cauchy sequence 

{𝑓𝑛}𝑛≥1from 𝐿𝑝,2 converges to a function that belongs to 𝐿𝑝,2. To measure the degree of best approximation, 

we define the modulus of smoothness in 𝐿𝑝,2 as follow 

Definition(5) Let 𝑓 ∈ 𝐿𝑝,2, then the 𝑘th symmetric difference of 𝑓 is given by 

 

∆ℎ
𝑘(𝑓, 𝑥, [𝑎, 𝑏]) = {

∑ (
𝑘
𝑖

) (−1)𝑘−𝑖𝑓 (𝑥 −
𝑘ℎ

2
+ 𝑖ℎ)𝑘

𝑖=0 ,        𝑥 ±
𝑘ℎ

2
∈ [𝑎, 𝑏]

0                                                       ,        𝑜. 𝑤.                 
 (3) 

 

So the 𝑘th modulus of smoothness of 𝑓 is given by 

 

𝜔𝑘(𝑓, 𝜑, 𝛿, [𝑎, 𝑏])𝑝 = sup
0<ℎ≤𝛿

‖∆ℎ
𝑘(𝑓,∙) , 𝜑‖

𝑝
, (4) 

 

for some 𝛿 ≥ 0. 
 

 

2. CONSTRUCTION OF FNN WITH RELU ACTIVATION FUNCTION 

We have to talk about the set of approximation. Choosing the target approximation space is as much 

important as choosing the function space. It is related to the applicable properties and the accurate results to 

each space. Moreover, sometimes it is preferred to replace a certain function by its approximation from some 

vital space. Scientists approximate functions by polynomials, wavelets, splines and neural networks.  

For the wide usage of neural networks and their ability to solve problems from different fields (see [21-38])  

a set of functions from Lp space is approximated by neural networks in this work.  Many papers contains this 

topic widely, we mention some of them in the references below (see [39-47]).  

 Let the approximation neural operator 

 

𝒩 = ∑ 𝑐𝑖ℛ(𝑤𝑖𝑥 + 𝜗𝑖)
𝑛
𝑖=1 , (5) 

 

where 

 

ℛ(𝑥) = 𝑥+ = 𝑚𝑎𝑥(0, 𝑥) = {
0,   𝑥 ≤ 0
𝑥,   𝑥 > 0

}, (6) 

 
is the Relu activation function. For its simplicity and efficiency, scientists use Relu function to activate  

the neural network. In comparison with other activation functions, it gives faster and more acceptable results, 

it solves the problem of vanishing gradient that most activation functions suffer from. In the field of function 

approximation, [48-50] are some papers that dealt with neural approximation with Relu activation function. 

Now, we are ready to discuss the essential point in this paper. Here is the definition of the best simultaneous 

approximation of the set 𝐿𝑝,2 by elements of ℵ under the norm (2). 

Definition(6) The simultaneous best approximation of a subset ℱ of 𝐿𝑝,2 is 𝑁∗ ∈ ℵ in the expression 

 

inf
𝑁∈ℵ

{sup
𝑓∈ℱ

‖𝑓 − 𝑁, 𝜑‖𝑝} = sup
𝑓∈ℱ

‖𝑓 − 𝑁∗, 𝜑‖𝑝 (7) 

 

In the next section, we construct our neural approximation of type (5) simultaneously to 𝐿𝑝,2. 
 

 

3. EXISTENCE THEOREM 

Let 𝑓 ∈ 𝐿𝑝,2, then there exists a FNN of the form: 

 

𝒩𝑛 = ∑ 𝑐𝑖ℛ(𝑤𝑖𝑥 + 𝜗𝑖)
𝑛
𝑖=1 ,  

 

where ℛ is the Relu activation function on [𝑎, 𝑏] and the parameters 𝑐𝑖  , 𝑤𝑖  , and 𝜗𝑖 are chosen as follow: 
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𝑤𝑖 = −2
ℎ𝑛

|𝑏−𝑎|
,  

𝜗𝑖 =
ℎ𝑛

|𝑏−𝑎|
(2𝑎 + (2𝑖 − 1)

𝑏−𝑎

𝑛
),  

 

𝑐0 = 𝑓(𝑎) − ∑ 𝑐𝑖ℛ(𝑤𝑖𝑎 + 𝜗𝑖)
𝑛
𝑖=1 ,  

 

𝑐𝑖 =
1

2𝑏
∑ (

𝑘
𝑖

) (−1)𝑘−𝑖𝑓 (𝑥 −
𝑘ℎ

2
+ 𝑖ℎ)𝑘

𝑖=0 ,   

 

where ℎ =
𝑏

2𝑛
. 

 

Proof: 

Since ℛ(𝑥) = 𝑥+, ∀𝑥 ∈ [𝑎, 𝑏], then by (6), sup
𝑥∈[𝑎,𝑏]

|ℛ(𝑥)| = 𝑏. 

Let the partition 𝑎 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏, such that for all 1 ≤ 𝑖 ≤ 𝑛, and let 𝑥𝑖 = 𝑎 + 𝑖
𝑏−𝑎

𝑛
,  

Choosing 𝑐0 = 𝑓(𝑎) − ∑ 𝑐𝑖ℛ(𝑤𝑖𝑎 + 𝜗𝑖)
𝑛
𝑖=1 , gives the guaranty that 𝑓(𝑎) = 𝒩𝑛(𝑎). 

For all 𝑥 ∈ [𝑎, 𝑏], there is 𝑗 ∈ Ν,   0 ≤ 𝑗 ≤ 𝑛, such that 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], and that  

 

𝒩𝑛(𝑥) = 𝑓(𝑎) + ∑
1

2𝑏
∑ (𝑘

𝑙
) (−1)𝑘−𝑙𝑓 (𝑥 −

𝑘ℎ

2
+ 𝑙ℎ)𝑘

𝑙=0
𝑛
𝑖=1 [ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)]  

 

= 𝑓(𝑎) + ∑
1

2𝑏
∑ (𝑘

𝑙
) (−1)𝑘−𝑙𝑓 (𝑥 −

𝑘ℎ

2
+ 𝑙ℎ)𝑘

𝑙=0
𝑗−1
𝑖=1

[ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)]  

 

+
1

2𝑏
∑ (𝑘

𝑙
) (−1)𝑘−𝑙𝑓 (𝑥𝑗 −

𝑘ℎ

2
+ 𝑙ℎ)𝑘

𝑙=0 [ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)]  

 

+ ∑
1

2𝑏
∑ (𝑘

𝑙
) (−1)𝑘−𝑙𝑓 (𝑥 −

𝑘ℎ

2
+ 𝑙ℎ)𝑘

𝑙=0
𝑛
𝑖=𝑗+1 [ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)]  

 

= 𝑓(𝑎) + 𝑆1 + 𝑆2 + 𝑆3  

 

To estimate |ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)|, we have two cases. For 𝑖 > 𝑗, we have, 𝑥 ≤ 𝑥𝑗 ≤ 𝑥𝑖−1,  

so by monotonicity of ℛ and our choices of the parameters 𝑤𝑖  , 𝜗𝑖 and 𝑥𝑖, we get 

Case(1) 

 

 0 < ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)  
 

≤ ℛ(𝑤𝑖𝑥𝑗 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖) 

 

≤ ℛ(𝑤𝑖𝑥𝑖−1 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖) 
 

= ℛ(ℎ) − ℛ(2ℎ𝑖 − ℎ) 
 

= −2ℎ𝑖 = −
𝑏𝑖

𝑛
∙ 

 

Case(2) 

 

For 𝑖 < 𝑗, we have, 𝑥𝑖 ≤ 𝑥𝑗−1 ≤ 𝑥, then 

 

 ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖) 
 

≥ ℛ(𝑤𝑖𝑥𝑖 + 𝜗𝑖) − ℛ(𝑤𝑖𝑥𝑖−1 + 𝜗𝑖) 
 

= ℛ(−ℎ) − ℛ(ℎ) 
 

= −ℎ = −
𝑏

2𝑛
∙ 
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For the two cases, we conclude that 

 

|ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)| ≤ ℎ =
𝑏

2𝑛
  

 

Now, we are ready to estimate 𝑆1,  𝑆2 and 𝑆3  

 

|𝑆1| ≤
1

2𝑏
∑ ∑ (𝑘

𝑙
) (−1)𝑘−𝑙 |𝑓 (𝑥 −

𝑘ℎ

2
+ 𝑙ℎ)|𝑘

𝑙=0
𝑗−1
𝑖=1

|ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)|  

≤
1

4
∆ℎ

𝑘(𝑓, 𝑥, [𝑎, 𝑏])   

 

|𝑆2| ≤
1

2𝑏
∑ (𝑘

𝑙
) (−1)𝑘−𝑙 |𝑓 (𝑥𝑗 −

𝑘ℎ

2
+ 𝑙ℎ)|𝑘

𝑙=0 |ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)|  

≤
1

4
∆ℎ

𝑘(𝑓, 𝑥, [𝑎, 𝑏])   

 

|𝑆3| ≤
1

2𝑏
∑ ∑ (𝑘

𝑙
) (−1)𝑘−𝑙 |𝑓 (𝑥 −

𝑘ℎ

2
+ 𝑙ℎ)|𝑘

𝑙=0
𝑛
𝑖=𝑗+1 |ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)|  

≤
1

4
∆ℎ

𝑘(𝑓, 𝑥, [𝑎, 𝑏])   

 

Finally, let ∈ 𝐿𝑝,2 , then 

 

‖𝒩𝑛(𝑥) − 𝑓(𝑥), 𝜑‖𝑝
𝑝

≤ ∫ |𝒩𝑛(𝑥) − 𝑓(𝑥)|𝑝𝑏

𝑎
|𝜑(𝑥)|𝑝𝑑𝑥  

 

≤
1

2𝑏
∑ [ℛ(𝑤𝑖𝑥 + 𝜗𝑖) − ℛ(𝑤𝑖𝑎 + 𝜗𝑖)] ∫ ∑ (𝑘

𝑙
) (−1)𝑘−𝑙𝑘

𝑙=1 |𝑓 (𝑥 −
𝑘ℎ

2
+ 𝑙ℎ)|

𝑝

|𝜑(𝑥)|𝑝𝑑𝑥
𝑏

𝑎
𝑛
𝑖=1   

 

≤
3

4
𝜔𝑘 (𝑓, 𝜑,

1

𝑛
)

𝑝
. ∎  

 

 

4. UNIQUENESS THEOREM 

The simultaneous best approximation 𝑁∗ ∈ ℵ of a subset 𝐹 of 𝐿𝑝,2 is unique. 

 

Proof: 

To prove that 𝑁∗ ∈ ℵ is unique, suppose that N1, N2 ∈ ℵ be two simultaneous approximations to 𝐹, 
then by Definition(3) 

 

lim
𝑛→∞

‖N1 − 𝑓, 𝜑‖𝑝  = 0,  

 
and 

 

lim
𝑛→∞

‖N2 − 𝑓, 𝜑‖𝑝  = 0,  

 

So by condition [C4*] of Definition(1), there exists 𝑘 ≥ 1, 
 

‖N1 − N2, 𝜑‖𝑝 ≤ 𝑘(‖N1 − 𝑓, 𝜑‖𝑝 + ‖N2 − 𝑓, 𝜑‖𝑝)  

 

By taking limits to both sides as n tends to infinity, then for all 𝜑 ∈ L𝑝,2 

 
lim
𝑛→∞

‖N1 − N2, 𝜑‖𝑝 = 0,  

 

So N1 = N2, and the best simultaneous approximation to 𝐹 out of ℵ is unique. 
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5. CONCLUSION  

Simultaneous approximation in the 𝐿𝑝,2 space is defined in details in this paper. Construction of 

neural networks with rectified activation function that approximates a subset of 𝐿𝑝,2 simultaneously is 

obtained too. In spite of its various applications, it gives accurate results that depends on modulus of 

smoothness. It would be interesting to discuss vital applications in 2-structure spaces for the constructed 

neural network. 
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