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 White root disease is one of the most serious diseases in rubber plantation in 
Malaysia that originally infects on the root surface of the rubber tree.  
So, prevention is important compared to treatment. The classification system 
proposed in the research had the ability of detecting the disease by 
classifying between healthy rubber trees and white root disease infected 
rubber trees. 600 samples of latex from healthy rubber trees and white root 

disease infected rubber trees were taken from the RRIM station in Kota 
Tinggi, Johor. These samples were measured based on its relative 
permittivity and capacitance. All of the measurement inputs from  
the experiment were tested using statistical analysis. These measurement 
input were then went through the process of classification in ANN to 
generate the optimized models by using LM and SCG algorithm. There were 
four optimized models selected from the classification process. The accuracy 
from the selected most optimized models were greater than 70%.  

The selected most optimized models were then used to classify between 
healthy trees and white root infected trees based on single input categories.  
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1. INTRODUCTION  

Artificial Neural Network (ANN) is a model of Artificial intelligence system inspired from 
astonishing human and animal biological brain work to make a decision and providing utilisation and 

understanding of potential function between human and artificial information processing system [1].  

The behaviour of human brain starts from a learning process. The brain will process the input that came from 

the sensory organs. The same goes to artificial neural network, the intelligence system involving three stages 

starts from training, validation and testing. The interconnection between neurons, also known as hidden layer, 

is an important part to show the complexity of the system. In addition, the weight of every layer will change 

due to the training numbers and it will make the system increase in accuracy of making a decision. 

Nowadays, ANN has been used widely in engineering disciplines such as in electrical and computer 

engineering. The inputs obtained were processed through the structure which emulates the human brain 

performance [2]. The implementation of ANN can be seen in many applications such as (i) identification and 

recognition of complex dynamics, (ii) instrument and sensors calibration, and also in (iii) analog and digital 
signal processing [3].  
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Several works have been done through ANN to measure the permittivity of some materials. P. G. 

Bartley et al. [4] has trained ANN to determine the dielectric properties of eleven samples of water and 

isopropyl alcohol solutions. The coefficient of determination obtained was 0.999. He used the method of feed 

forward and back propagation method. In other works that have been done, microwave technology research 

used ANN as a computational standard. C. Qian et al. [5] used ANN to measure the permittivity of material 

under microwave radiation. The permittivity of every sample was measured by using open ended coaxial 

probes. The data collected has become input to the ANN that uses Back Propagation (BP) as an algorithm.  

It was said that the BP algorithm can give the results in seconds and it is convenient to measure  

the permittivity of material even though the error is bigger compared with A. Hasan research [6].  

A. Hasan [6] have measured the complex permittivity of materials using monopole antenna probe with the 
frequency range between 2.5-5 GHz. The probe immersed in the dielectric medium to measure the dielectric 

properties. After the data is obtained, the ANN algorithm was developed and Levenberg-Marquardt (LM) 

technique was used as a propagation algorithm. The result shows that error does not exceed 1% compared 

with the actual value.  

The other researcher that used LM algorithm was done by H. Hadzli et al. [7] in classifying  

the rubber seed clones through imaging technique. He used 160 samples for training and 100 samples for 

testing part. The result shows that the performance achieved was 84.0% which can be considered as a good 

result. Other than that, there are other studies that used both LM and SCG for their research work.  

Prerana and Parveen Sehgal [8] had made a comparative study of Gradient Descent (GD),  

Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) method of neural network for thyroid 

disease diagnosis. In their study, it had been observed that Levenberg Marquardt (LM) and Scale Conjugate 
Gradient (SCG) methods have shown a better training performance for achieving the set target in 31 epochs 

for (LM) and 56 epochs for (SCG) compared to Gradient Descent which require 1000 epochs.  

For classification, Sheeja Agustin [9] had compared between (LM) and (SCG) for classifying between 

normal and abnormal thyroid images. Both techniques have shown the performance accuracy more than 70%. 

Based on the literature review, it shows that (LM) and (SCG) learning algorithm are among the best methods 

for classification process in ANN and is suitable to be implemented in the research for developing  

the classification model. 

 

 

2. METHODOLOGY 

ANN is a problem-solving tool that has become an alternative modelling method to systems with 

scientific or mathematical basis. ANNs have gained much attention as significant soft computing tools, not 
limited to data processing and analysis but can also be applied to solve difficulties in processes [10, 11].  

The objective of the application of ANN in this research is to classify which tree is healthy and tree that has 

been infected with white root disease based on their measurement properties value. ANN classification was 

implemented with the use of LM and SCG algorithm in the research. Multilayer Perceptron with Back 

Propagation (MLP-BP) are the main algorithm in this research. A comparative method of LM algorithm 

(trainlm) versus SCG algorithm (trainscg) for data classifications was also presented to verify  

the effectiveness of the proposed algorithms. ANN Classification is the process of learning to separate 

samples into different classes, which are training and testing by finding common features between samples of 

known classes, which in this research is to find the difference between healthy and infected trees [12].  

The best or most optimised model was also identified in the classification model by comparing between LM 

and SCG algorithm. Figure 1 shows the flowchart of the ANN modelling starting from data arrangement to 
classification system. 

ANN Classification uses two architectures namely Multilayer Perceptron (MLP) and back 

propagation (BP). An MLP is a feed forward ANN, which maps sets of input neurons onto a set 

computational output [13]. By knowing the derivative of the function, back propagation algorithm could be 

beneficial for dividing the contribution of each weight by using three or more hidden layers with nonlinear 

activation function. It is also known to be the most widely applied learning algorithm for MLP in neural 

networks and employs gradient descent to minimise the squared error between the network output value and 

desired output value. 

LM and SCG algorithms were part of the algorithm contained in the backpropagation category, 

which is a common method of training in ANNs [14]. In this research, examinations of two popular training 

algorithms (LM and SCG) were presented for detecting infected rubber trees with white root disease using 

the MLP classifier. The performance of the training algorithms was tested and compared on all of  
the experiment measurement data, which consisted of relative permittivity measurement and capacitance 

measurement.  
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The datasets of the input measurement from all experiments were arranged neatly for ANN 

programming. The total number of 600 samples of natural rubber latex was divided into 300 samples from 

healthy rubber trees and 300 samples from rubber trees infected with white root disease. The system 

proposed had one inputs and one output, in which the results were either healthy or infected. These data from 

each measurement were organised to make it in the order of row and column in Excel. For ANN 

programming, the datasets were split into training, testing, and validation. From 600 samples, 70% will be 

used as training input and the remaining 30% was for testing and validation input. This would show that 420 

datasets were taken for training, 90 datasets for testing, and another 90 datasets for validation. Breakdown of 
the datasets portion used in training, testing, and validation are illustrated in Table 1. 

 

 

 
 

Figure 1. ANN modelling flow chart 

 

 

Table 1. Number of datasets arranged for the use of neural network algorithm 
Input Measurement Training set Testing set Validation set Total 

Permittivity 420 90 90 600 

Capacitance 420 90 90 600 

Total 840 180 180 1200 

 

 

There were several evaluation parameters attained for the modelling. These evaluation parameters 

were used to obtain the best model. The evaluation parameters involved were hidden layer size, sensitivity, 

specificity, accuracy, and area under the curve (AUC). Programming based on LM and SCG algorithms was 

done using MATLAB R2017a software, which was developed by MathWorks. 
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3. RESULTS AND DISCUSSION 

After running all the experiments and statistical analysis, the readings to provide inputs for the ANN 

were established. This section provides the platform to develop an intelligence classifier with the use of input 

measurement from the experiment. In that section, the classification process involving data arrangement and 

optimisation of ANN model were discussed and suggested that measurements recommended as inputs to this 

classifier came from single input category. The explanation of the input category will be analysed next to 

explain the findings of the most optimised model based on the performance evaluation criteria that have  

the best hidden layer size, minimum MSE value, accuracy, area under the curve for ROC plot, sensitivity and 

specificity.   

A systematic analysis of 24 models of performance measures was used in both LM and SCG for 
each measurement input model. Each model represents its performance measure with a set of changes in  

the hidden layer size, which was gradually increased from 3 to 49 with a step size of 2 each time of 

simulation. Based on the information, there will be 24 models to be generated from each measurement input 

category for LM and SCG. Only the best models from each input category from LM or SCG with the most 

optimised performance were selected. The sequence of finding the most optimised model based on  

the comparison of the input measurements between different models are shown in Table 2.  

 

 

Table 2. Sequence of finding the most optimised model 
Input (I/P) 

Categories 
I/P Measurement 

No. of 

Models 
Algorithm 

No. of Optimised 

Model 

Single I/P 

Relative Permittivity 
24 LM 1 

24 SCG 1 

Capacitance 
24 LM 1 

24 SCG 1 

 

 

The explanation of this section starts with the analysis of mean square error for the most optimised 

model selected from the single input category. This is followed by the analysis of the performance evaluation 

criteria based on the confusion matrix table. By comparing the performance evaluation criteria between LM 

and SCG algorithms, significant differences of measured optimised parameters were analysed and 

synthesised. The results and discussions in this section will show the most optimised model for the single 

input data. Table 3 shows the summary of the selected models for single input category. 
 

 

Table 3. Summarised (MSE) analysis from single inputs 

Input Measurement Model 
Hidden Layer 

Size 

Minimum MSE 

value 

Single 
Relative Permittivity ANN1IPHS27neu 27  after 28 epochs 

Capacitance ANN2IPHS7neu 7  after 13 epochs 

 

 

From the result of each measurement input, it was found that models that have the lowest number of 

hidden layer among all optimised models were from the models ANN2IPHS7neu. Model ANN1IPHS27neu 

was chosen to be the most optimised model for a single input relative permittivity measurement followed by 

model ANN2IPHS7neu for a single input capacitance measurement. The fact that based on the mean square 
error (MSE) alone was not enough to prove that the selected most optimised models from LM and SCG were 

the best among all. This fact can be further reinforced by comparing the values of all measured parameters 

for optimisation. The optimisation for the best model could be best done based on the evaluation parameters 

and will be described in the next section of confusion matrix.  

The entire selected models were based on its performance characteristics. This evaluation of 

performance would be best visualised using a confusion matrix. This matrix contains information about 

sensitivity, specificity, and accuracy to evaluate the best model. The correctness of a classification can be 

evaluated by computing the number of correctly recognised class [15-19]. These four counts constitute a 

confusion matrix that shows the evaluation information for the best model. In regards to the confusion matrix 

from all input measurements, the classification measurement values of the confusion matrix can be observed 

by referring to all data confusion matrix [20-22]. 

From Figure 2(a), for single input relative permittivity measurement, the selected optimised model 
from SCG had a value of sensitivity equal to 79.00% and specificity equal to 69.00% compared with the 

optimised model from LM, which had a value of sensitivity equal to 77.00% and specificity equal to 73.67%. 

From Figure 2(b), for single input capacitance measurement, the selected optimised model from SCG had a 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 1, July 2020 :  222 - 228 

226 

value of sensitivity equal to 98.00% and specificity equal to 81.00% compared with the optimised model 

from LM, which had a value of sensitivity equal to 94.67% and specificity equal to 84.67%. 

 

 

  
(a) (b) 

 

Figure 2. Comparisons of Sensitivity and Specificity for Single Input Categories, (a) Single input relative 

permittivity measurement, (b) Single input capacitance measurement 

 

 

Accuracy and Area under Curve (AUC) are important factors in determining the best model in  

the ANN classification process and it has been proven that these two factors have the ability in determining 

the measurement for evaluating the best model [23-25]. The evaluation factors contributing to  

the performance of the selected models were further discussed towards accuracy and AUC. For the process of 
obtaining the value of AUC, the Receiver Operating Characteristic (ROC) curves need to be carried out first. 

The ROC curve is another parameter that needs to be evaluated before any conclusive decision in selecting 

the most optimised model. The parameters in ROC plot that need to be analysed are the Euclidean Distance 

(ED) and Bookmarker Informedness (BM) for determining the best threshold (i.e. closest indicate to  

the perfect point (0, 1) in the ROC plot) and the total area under curve (AUC). Based on the observation from 

Figure 3, ROC curve for all models lies above the diagonal line. Selection for the best model between LM 

and SCG algorithm are now at the last criteria evaluation, which describes the results from calculating  

the Hidden Layer Size (HLS) and Area under Curve (AUC). 

 

 

  
(a) (b) 

 

Figure 3. ROC curve plot for the selected optimised model for all input categories, (a) Relative permittivity 

(SCG), (b) Capacitance (SCG) 

 

 

The optimisation process was start with the calculation of HLS involved in the model.  

Table 4 shows the HLS obtained from every optimised model calculated. The reason of using HLS in  

the optimisation process lies in the theory that claims when lower connection is obtained, the better  

the system would be and this would definitely strengthens the fact in choosing the best model [26, 27].  
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Table 4. Hidden layer size for all optimised models 
Input 

Categories 
Algorithm HLS Sensitivity (%) Specificity (%) Accuracy (%) AUC (%) 

Single 

LM 49 77.00 73.67 75.33 80.99 

SCG 27 79.00 69.00 74.00 79.31 

LM 9 94.67 84.67 89.67 93.09 

SCG 7 98.00 81.00 89.50 92.54 

 

 

The consideration of an optimised model were further analysed by looking at the best HLS between 

each model from each input category. Starting from the first model in single input relative permittivity 

measurement, the selected optimised model was from SCG, which had a value of HLS equal to 27 compared 

with the optimised model from LM, which had a value of HLS equal to 49. In the single input capacitance 

measurement, the selected optimised model was from SCG, which had a value of HLS equal to 7 compared 

with the optimised model from LM, which had a value of HLS equal to 9. The selection that was based on 

the evaluation criteria can be summarised by looking at the lowest number of hidden layer size, the highest 

sensitivity and specificity, the optimum value of accuracy and the highest AUC among the optimised models. 

The summary of the selected models can be shown in Table 5. 

 
 

Table 5. The summary of performance evaluation parameters results for the selected optimised model 

Input 
Ann Model 

Structure 
HLS 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
AUC (%) Net Name 

Single 

ANN1IP(LM) 49 77.00 73.67 75.33 80.99  

ANN1IP(SCG) 27 79.00 69.00 74.00 79.31 ANN1IPHS27neu 

ANN2IP(LM) 9 94.67 84.67 89.67 93.09  

ANN2IP(SCG) 7 98.00 81.00 89.50 92.54 ANN2IPHS7neu 

 

 

4. CONCLUSION  

In conclusion, it shows that the developed model for classifying between healthy trees and white 

root disease infected trees based on electrical properties is reliable. This was based on the overall observation 

of the performance evaluation parameters where the selected most optimised model from each input category 

can be proven to be significant. These were based on the comparison between each of the performance 

evaluation parameter result including the HLS. Two types of models have been selected throughout  

the process of selecting the most optimised model based on the performance evaluation parameter results and 

these selected optimised models are ANN1IP(SCG) and ANN2IP(SCG).  
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