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 Voice recognition has evolved exponentially over the years. The purpose  
of voice recognition or sometimes called speaker identification, is to identify  

the person who is speaking. This can be done by extracting features of speech 
that differ between individuals due to physiology (shape and size of the mouth 
and throat) and also behavioral patterns (pitch, accent and style of speaking). 
This paper explains an approach of voice recognition to identify the ethnicity 
of Malaysian people. Pitch and 13 Mel-Frequency Cepstrum Coefficients 
(MFCCs) are extracted from 52 recorded continuous speech in Malay for use 
as features to train the classifiers using Tree, Naïve Bayes, Nearest Neighbors 
and Support Vector Machine (SVM) and another 10 recorded speeches  
are used for testing. The results reveal that the use of a combination of pitch 

and 13 coefficients for features extraction and training the data using SVM 
provide better accuracy (57.7%) than the use of only 13 coefficients (53.8%). 
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1. INTRODUCTION 
Humans have dreamed of creating robots to interact socially just as humans interact with each other. 

Applications based on social robots, a kind of humanoid robot, have emerged as a platform with huge potential 
in the field of human-robot interaction (HRI). Sophia, Jia Jia, Erica [1], Nadine, Pepper [2], Nico [3]  
and Frog [4] are some examples of robots that had been enhanced with human-like traits to make  
the communication between robot and human better and easier [5]. Unfortunately, most of the aforementioned 
social humanoid robots are based on some key languages such as English, Mandarin and Japanese. Since each 
language reflects the culture of a particular social group, the humanoid must be sensitive to the pitch  
and intonation of each language in order for it to interpret correctly as well as give appropriate response when 
communicating with users. Malaysia is a multi-racial country consisting of many ethnic groups such as  
the Malay, Chinese, Indian and Bumiputera which can be further classified as Iban, Kadazan, Melanau, Murut, 
Bidayuh and Bajau [6]. Malay language is the national language and it is spoken by the various ethnic groups 
but their pronunciations may slightly differ when it is not their native language [7]. Thus, this research attempts 
to identify whether the ethnicity of the speakers can be detected based on the features extracted from  
the recorded audio. By knowing the ethnicity of the speaker would make it easier to interpret and respond to 
the different ethnic groups. 

The term speech recognition and voice recognition have often been used interchangeably although 
they are actually different. Speech recognition is concern with the words being spoken whereas voice 
recognition aims to recognize the speaker rather than the words [8]. Voice recognition is also called speaker 
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identification since each individual’s speech is unique based on his/her physiology and behavioral patterns. 
Pitch, speaking style and accent are some features that contributed to the differences [9].  

In voice recognition, feature extraction is one of the procedures that need to be conducted to extract a 
small amount of data from the speaker’s voice signal and these data are kept as a database [10].  
Feature extraction is important in the digital waveform to reduce the variability in the continuous speech [11]. 
There are many different techniques that can be used for feature extraction such as the Linear Predictive Coding 
(LPC), Perceptual Linear Coding (PLC), Mel-Frequency Cepstrum Coefficient (MFCC), etc [12]. MFCC is 
mainly designed using the knowledge of human auditory system [13-17]. This paper is organized as follows. 
Section 2 explains in depth the research methodology adopted in conducting the experiment. Section 3 
discusses the results and finally, Section 4 draws the conclusion and highlight avenues for future work. 

 

 

2. RESEARCH METHOD 

The basic representation of speaker identification system consists of pre-processing, feature 

extraction, and classification as shown in Figure 1 [18]. Interference due to noise often occurs during speech 

recording causing the performance to be degraded. Thus, before feeding the speech signal to the feature 

extraction phase, the noise in the signal must be reduced as it is impossible to completely remove it from  

the signal. In this research, PRAAT is employed to reduce the noise from the original signals based on spectral 

subtraction method which is one of the first algorithms used for the enhancement of mono channel speech [19]. 

The basic concept of spectral subtraction is to obtain clean speech by subtracting the noise spectrum from  
the noisy speech spectrum [20]. Figure 2 shows the result for one speech which has undergone the process. 

 
 

 
 

Figure 1. Basic diagram for speaker identification 

 
 

 
 

(a) Original signal 
 

 
 

(b) Denoised signal 

 

Figure 2. Before and after noise reduction signal, (a) Original signal and (b) Denoised signal 

 

 

One of the most important parts of machine learning is feature extraction whereby raw data is turned 

into information that is useful for machine learning algorithms by eliminating the redundancy present in many 

types of measured data [21]. Besides, it is also important to avoid having too many features as they require 
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more computational resources during the training stage and might cause overfitting. Thus, this research uses 

the MFCC technique to capture the main characteristics of 52 continuous speeches due to its high accuracy  

and high performance. The basic concept of MFCC technique is shown in Figure 3 [22]. 

Basically, speaker identification involves two phases: training phase and testing phase [23].  

Figure 4 shows the block diagram of the methodology used in this work. The denoised speech corpus from 52 

recorded speeches in Malay language acquired from local news websites are developed using the audio 

speeches collected by T.P. Tan [24]. Table 1 shows the demographic profiles of the respondents. 

 

 

 
 

Figure 3. Steps to compute MFCC feature vectors 

 

 

 
 

Figure 4. Block diagram of the proposed methodology 

 

 

Table 1. Demographic of respondents 
Ethnic Gender Frequency (N=52) Percentage (%) 

Malay Female 8 15.38 

 Male 6 11.53 

Chinese Female 9 17.30 

 Male 6 11.53 

Indian Female 8 15.38 

 Male 6 11.53 

Bumiputera Female 6 11.53 

 Male 3 5.76 
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Pitch and 13 MFCCs are the features extracted from denoised signals to classify the speaker’s 

ethnicity based on four categories: Malay, Chinese, Indian and Bumiputera. Pitch refers to the frequency  

of the mechanical movement in the glottis and is very much related to its physical characteristics [25].  

Pitch is controlled by the tension in the vocal muscles. The range of frequencies for normal speaking human 

voice is 70-200 Hz for males and 140-400 Hz for females [26]. PRAAT is used to get the mean pitch for each 

speech signal. MFCC is one of the popular feature extraction technique used in speech signal [27]. In this work, 

mfcc function in Matlab is used to extract the 13 coefficients. The features of the speech signal are in  

the form of 13 x N dimensional feature vectors. N is different for each speech depending on the duration  

of the speech. Thus, the mean for each column of 13 coefficients are determined. These pitch and 13 

coefficients (column c0 to c12) are kept in an Excel file as shown in Figure 5 for training purposes  

and the trained model is then used to test the new data. The same methods are repeated for another 10 new 

speeches for testing purposes.  

 

 
 

 

 

 
 

Figure 5. Features compilation in Excel for training 

 

 

3. RESULTS AND ANALYSIS 

Classification Learner apps is a machine learning provided by Matlab to train models to classify data. 

The advantages of this app include allowing user to select features, specify validation schemes, train model 

and even assess the results. Automated learning can be done to get the best type of classification model.  
To perform this, a known set of input data (observations) and known responses to the data (classes) are needed. 

These data are used to train a model that generates predictions for the response to new data. This can be done 

by exporting the model to the workspace to create the trained model. In this research, we performed two models 

before deciding on the best model to be used.  

 

3.1.   Model 1-13 coefficients 

In Model 1, the input data uses only 13 coefficients extracted with the exclusion of pitch during  

the training phase. The Tree, Naïve Bayes, Nearest Neighbors and SVM are used as classifiers to determine 

which one gives the highest accuracy. Table 2 shows the result on accuracy for each classifier and it can be 

seen that the Linear SVM provides the highest accuracy at 53.8%. 

Figure 6 shows the confusion matrix for Model 1 indicating areas where the classifier has performed 

poorly. The row shows the true class and the columns show the predicted class. Since this work uses  
cross-validation, the confusion matrix is calculated using the predictions on the held-out observations.  
The diagonal cells show where the true class and predicted class match. As can be seen, the Indian ethnic group 

has the highest number of matching followed by the Malay, Chinese and lastly, the Bumiputera group.  

Class Label/ 

Response 

Feature Vectors/ 
Predictors 
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The lowest number for the Bumiputera group may be attributed to the small sample of such speakers collected 

for this research. The trained model is then exported to the workspace in Matlab to be tested with 10 new data 

speeches to determine the number of correct predictions. Table 3 shows the predicted results using Linear SVM 

for Model 1 where 10 speeches are compared to the class label of testing data. Only ethnicity of six speeches 

(60%) were predicted correctly. 

 

 

Table 2. Results of accuracy with 13 features  
Type of Classifier Accuracy (%) 

Tree Fine Tree 30.8 

Medium Tree 30.8 

Coarse Tree 36.5 

Nearest Neighbors Fine KNN 40.4 

Medium KNN 40.4 

Coarse KNN 25.0 

Cosine KNN 42.3 

Cubic KNN 40.4 

Weighted KNN 42.3 

Naïve Bayes Gaussian Naïve Bayes 51.9 

Kernel Naïve Bayes 48.1 

Support Vector 

Machine 

Linear SVM 53.8 

Quadratic SVM 46.2 

Cubic SVM 50.0 

Fine Gaussian SVM 32.7 

Medium Gaussian SVM 46.2 

Coarse Gaussian SVM 28.8 

 

 

 

 

Figure 6. Confusion Matrix for Model 1 

 

 

Table 3. Predicted result using Linear SVM for Model 1 
Class Label of Testing Data Predicted Result using Linear SVM 

Chinese Indian 

Chinese Malay 

Bumiputera Indian 

Indian Indian 
Indian Indian 
Malay Malay 

Chinese Chinese 

Indian Indian 

Malay Malay 

Bumiputera Indian 
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3.2.   Model 2-Pitch + 13 Coefficients 

In Model 2, the input data uses pitch and 13 coefficients. The Tree, Naïve Bayes, Nearest Neighbors 

and SVM are used as classifiers to see which gives the highest accuracy. Table 4 shows the results of accuracy 

for each classifier. Again, Linear SVM gives the highest accuracy at 57.7%.  

Figure 7 shows the confusion matrix for Model 2. The Indian ethnic group still maintains the highest 

number of matching followed by the Malay and Chinese groups which share the same number of matching. 

Interestingly, the number of matching for the Bumiputera group has now increased by 1 using Model 2 

compared to Model 1. The increment might be due to the additional features included in Model 2.  
Table 5 compares the class label of testing data with the predicted result for Model 2. Seven speeches (70%) 

were predicted correctly in Model 2. 

 

 

Table 4. Results of accuracy with 14 features  
Type of Classifier Accuracy (%) 

Tree Fine Tree 30.8 

Medium Tree 30.8 

Coarse Tree 32.7 

Nearest Neighbors Fine KNN 44.2 

Medium KNN 38.5 

Coarse KNN 25.0 

Cosine KNN 34.6 

Cubic KNN 48.1 

Weighted KNN 40.4 

Naïve Bayes Gaussian Naïve Bayes 40.4 

Kernel Naïve Bayes 42.3 

Support Vector Machine Linear SVM 57.7 

Quadratic SVM 48.1 

Cubic SVM 48.1 

Fine Gaussian SVM 28.8 

Medium Gaussian SVM 50.0 

Coarse Gaussian SVM 28.8 

 

 

 
 

Figure 7. Confusion Matrix for Model 2 
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Table 5. Predicted result using Linear SVM for Model 2 
Class Label of Testing Data Predicted Result using Linear SVM 

Chinese Indian 

Chinese Malay 

Bumiputera Bumiputera  

Indian Indian 
Indian Indian 
Malay Malay 

Chinese Chinese 

Indian Indian 

Malay Malay 

Bumiputera Indian 

 

 

4. CONCLUSION 

The research conducted has shown that the combination of pitch and MFFCs as features in speech 

provide better accuracy in predicting the speaker’s ethnicity. Among the classifiers used in this research, Linear 

SVM provides the most accurate trained model. Future work may consider other feature such as formants  

and intensity to get a better trained model in predicting speaker’s ethnicity. 
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