
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 19, No. 3, September 2020, pp. 1480~1489

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v19.i3.pp1480-1489  1480

Journal homepage: http://ijeecs.iaescore.com

Design and implementation of fast floating point units

for FPGAs

Mohammed Falih Hassan
1
, Karime Farhood Hussein

2
, Bahaa Al-Musawi

3

1,3Department of Electronic and Communication Engineering, University of Kufa, Iraq
2Thi-Qar Oil Company, Iraq

Article Info ABSTRACT

Article history:

Received Nov 29, 2019

Revised Feb 20, 2020

Accepted Mar 25, 2020

 Due to growth in demand for high-performance applications that require high
numerical stability and accuracy, the need for floating-point FPGA has been

increased. In this work, an open-source and efficient floating-point unit is
implemented on a standard Xilinx Sparton-6 FPGA platform. The proposed
design is described in a hierarchal way starting from functional block
descriptions toward modules level design. Our implementation used minimal
resources available on the targeting FPGA board, tested on the Sparton-6
FPGA platform and verified on ModelSim. The open-source framework can
be embedded or customized for low-cost FPGA devices that do not offer
floating-point units.

Keywords:

Embedded block

Floating-point unit (FPU)

FPGA architecture

IEEE floating-point
Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mohammed Falih Hassan,

Department of Electronic and Communication Engineering,

University of Kufa, Najaf, Iraq.
Email: mohammedf.aljanabi@uokufa.edu.iq

1. INTRODUCTION

A field-programmable gate array (FPGA) is a flexible hardware computing tool that enables

designers to implement difficult tasks at higher execution speed with the ability to frequently upgrade during

runtime. Due to the high-speed capability of FPGAs, many existing systems and new technologies moved

from software implementations to hardware-based FPGA. Current applications become more complex and

require extensive Floating-Point (FP) calculations to satisfy the accuracy requirements. Digital Signal

Processing (DSP) and image processing, wireless communications, and other industrial applications are

examples of FPGA applications [1-9]. The requirement for speed is achieved using FPGA technologies and

parallel distributed systems while accuracy is achieved by incorporating FP arithmetic in algorithms

implementations [10-14].

Although embedded hardware FP blocks are available in commercial products such as [15-16],
there is still a need for software-core implementations for two reasons. First, FP is a complex process and

requires too many resources [17-19], as a result, it can customized software to match certain applications

[20]. Second, low-cost platforms do not equip with embedded FP. Therefore, software-core provides the

flexibility of optimized FP arithmetic to target different applications.

In this work, an efficient and open-source FP arithmetic for FPGA is suggested. The proposed

structure used IEEE 754 FP standard, the most widely used standard for FP computation. The proposed

design is described in the FPGA module level as well as at the software level. The system is implemented on

the Xilinx Spartan-6 chip on the Nexys3 board, a powerful digital system design platform that is optimized

for high-performance logic. We also verified the performance of our proposed module using ModelSim,

the multi-language HDL simulator. The proposed structure can be used and customized in applications that

require FP arithmetic.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Design and implementation of fast floating point units for FPGAs (Mohammed Falih Hassan)

1481

The rest of the paper is organized as follows. Section 2 reviews the IEEE 754 FP standard.

The Functional block diagram is described in Section 3. Then in Section 4 the modules level design for

FPGA is proposed. Section 5 discusses the results and finally the conclusion is given in Section 6.

2. IEEE 754 FLOATING-POINT STANDARD

In this section, the IEEE 754 FP format is described [21-24]. The format consists of three parts; Sign

(S), Exponent (E or exp) and Fraction (F). Figure 1 shows the three components (S , E , F) that represent

the IEEE FP format. The sign part is 0 for positive numbers and 1 for negative. The exponent is either

positive or negative depending on its values. The fraction represents the fraction part after FP numbers.

The ranges of E and F are directly related to the precision of FP numbers.

Figure 1. IEEE 754 floating-point format

The value of FP number can be calculated from (S , E , F) as described in (1)

() (-1) (1.) 2S val EDecimal FP Number val F   , (1)

where the term 1.F called Significand (Sig). The implied “1” to the left of the binary point represents the

normalized number while “0” represents the de-normalized number. The advantages of using FP numbers

can be summarized as follows. Firstly, helping in unifying the developments of FP framework. Secondly,

providing multi-level precision calculations that depend on a given application and finally making a seamless

porting of FP numbers to other applications. However, the FP numbers are more expensive compared to a

fixed point in hardware implementations.

According to the IEEE FP standard, there are two precision formats; single and double precision as

shown in Figure 2. The single-precision uses 1-bit for sign, 8-bits for exponent and 23-bits for the fraction.
While double precision format uses 1-bit for sign, 11-bits for exponent and 52-bit for the fraction.

S Exponent Fraction

S Exponent Fraction

2381

52111

(a)

(b)

Figure 2. (a) IEEE single precision format, (b) IEEE double precision format

The exponent field value represents both positive and negative numbers using biased exponent as

defined in (2)

(E) -val E bias , (2)

where bias is a constant, which is 127 for single precision and 1023 for double precision. In addition,

exponent values has the following properties (the numbers in the parentheses represent values for double

precision)

0 255(2047)E  ,

 0 255 2047 E and E are reserved for special values  ,

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 3, September 2020 : 1480 - 1489

1482

 1 254 2046 E are used for normalized FP number  ,

      127 1023 127 1023bias then val E E   .

A decimal value for the normalized FP number for two precisions formats is defined as [24]

2 (1) (1.) 2S E biasFP decimal value F     , (3)

where bias=127 and 1023 for single and double precisions respectively. In addition to normalized FP numbers,

there are de-normalized numbers, which is defined when the bit “1” defined in (3) changed to “0”. de-normalized

numbers have the advantage of providing gradual decreasing toward zero, i.e. fill the space between the smallest

normalized FP number and zero as shown in Figure 3. These numbers are defined when (S , 0E  , 0F ) and

their ranges described in (4). Table 1 summarized the ranges of FP numbers and their special values.

126

2

1022

2

 : (1) (0.) 2

 : (1) (0.) 2

S

S

Single precision F

Double precision F





  

  
 (4)

Figure 3. FP range for normalized and de-normalized numbers

Table 1. Summarized ranges of FP numbers and their special values
Single-Precision Exponent = 8 Fraction = 23 Value

Normalized Number 1 to 254 Anything
2

– 127 1. 2() EF 

Denormalized Number 0 nonzero
2

– 126 . 2(0) EF 

Zero 0 0 0

Infinity 255 0 

Not a Number 255 nonzero NaN

Double-Precision Exponent= 11 Fraction = 52 Value

Normalized Number 1 to 2046 Anything – 102

2

3 1. (2) EF 

Denormalized Number 0 nonzero

2

– 1022 . 2(0) EF 

Zero 0 0 0

Infinity 2047 0 

Not a Number 2047 nonzero NaN

3. FUNCTIONAL BLOCK DIAGRAM

Figure 4 shows the functional block diagram of the IEEE single-precision FP arithmetic

implemented on Xilinx Spartan-6 FPGA chip based on Nexys-3 board while Figure 5 shows the mapping of

input switches on the Neyxy3 board. The input signals to the FPGA board are:

a) SYSTEM_CLK: 100MHz system clock

b) Input switches (0 1 7, ,Sw Sw Sw): these switches are used to sequentially entering floating-point

numbers to the system and display results on the seven-segment unit. The inputting process is

implemented using a sequential state machine model.

c) UP-POINTER: this is a push-button input used to enter data sequentially in a forward direction starting

from the Least Significant (LS) digit to the Most Significant (MS) digit.

d) DW-POINTER: a push-button input used to remove the previous entering data in a backward direction.

e) ADD/SUB: a push-button input used to add/subtract numbers.

f) CALCULATE: a pushbutton switch to start the addition/subtraction operation.

g) RESET: a push-button input used to reset the system to the initial state.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Design and implementation of fast floating point units for FPGAs (Mohammed Falih Hassan)

1483

FPGA/ASIC

Floating

point

arithmetic unit

Seg0 Seg7

An0 An3

LD1
CALCULATE

ADD/SUB

UP-POINTER

DW-POINTER

Sw0-Sw7

RESET

SYSTEM_CLK

Figure 4. Functional block diagram for FP arithmetic unit

The output signals from the FPGA board are:

a) Seven segment output (0 1 7, , ,seg seg seg): These signals are used to send data to the seven-segment

display.

b) (0 1 3, ,...,An An An): Signals used to activate seven-segment digits.

c) 1LD : an LED signal used to show the arithmetic operation type (i.e. addition or subtraction).

Figure 5. Input signals description of the Sparton-6 FPGA board

4. MODULE DESIGN

The details of our module-level design for theblock (Figure (4)) is shown in Figure 6. It is important

to mention that we are designing a 5-bits word for each digit. This allows us to display more patterns on the

seven-segment compare to 4-bits word. These patterns hel FPGA functional p us to identify special cases

shown in Table 1. Below we describe the function of each module in detail.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 3, September 2020 : 1480 - 1489

1484

LD1

ADD/SUB

UP-POINTER

DW-POINTER

RESET

CALCULATE

BRU

BRU

BRU

SYSTEM_CLK

Floating point
ADD/SUB

Buffer (holding

data)

Num2

Num1

40 bits

40 bits

Num2= 32bitsNum1= 32bits

Padding

bit circuit

Result= 32bits

Control signal for

special cases values

MUX1

3x1

Num1= 40bits

Num2= 40bits
Result= 40bits

SW4

SW5

SW6

MUX2

2x1

40bits

Clock divider

unit

Binary to seven-

segment mapper

1KHZ_CLK

20bits

An0-An3

Seg0-Seg7

ADD/SUB

SW7

State machine

I/O

Management

Figure 6. Module level design for the FPGA functional block

A. Bouncing removing unit (BRU): This part is considered as an essential part of any system using input

signals from mechanical switches. The problem arises when a switch starts to connect, a fluctuating

output between one and zero for few milliseconds before settled to a steady-state level. It can remove

this effect by sampling the input signal by a 1 kHz clock that has a duration larger than the bouncing

period.
B. State machine I/O management unit: This unit is used to sequentially entering FP numbers into the

system. A state machine model is used to manage I/O operations as shown in Figure 7. The system

initially starts with the state 0S waiting for the input response. When UP-POINTER is active, the system

displays the current switches values on the seven-segment display and transit to the state 1S . When the

UP-POINTER is active, the state displays the second digit and transit to the state 2S and so forth. If the

system at state 2S and the DW-POINTER is active, the system will remove the second digit and transit

to state 1S and so forth.

C. Buffer unit: This unit is used to hold the output data of the state machine I/O unit and prevent displaying

the current switches inputs on the seven-segment display unit.

D. Floating-point addition/subtraction unit: The IEEE 754 FP standard is implemented to perform the

addition/subtraction of a single-precision FP numbers. Figure 5 shows a detailed flowchart of FP
arithmetic operations. It is straightforward to upgrade the proposed structure to perform arithmetic

operations for a double-precision format. It can summarize the basic idea of the flowchart as shown in

Figure 7. The process is started by comparing the exponent (E) of each number. After that,

the difference in exponent between the two numbers is used to calculate the amount of shifting to make

two exponents equal. The sign bit of the two numbers is checked. If the sign of the two numbers is the

same, the addition operation is done else a subtraction operation is done.

E. Padding bit unit: This unit used for converting the word length of floating-point add/subtract unit from

4-bits to 5-bits to match the overall data bus size.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Design and implementation of fast floating point units for FPGAs (Mohammed Falih Hassan)

1485

S0

S3

S2S15

S1S16

UP-POINTER

UP-POINTER

UP-POINTER

UP-POINTER

UP-POINTER

UP-POINTER

UP-POINTER

RESET

DW-POINTER

DW-POINTER

DW-POINTER

DW-POINTER

DW-POINTER

DW-POINTER

Figure 7. The state machine diagram for I/O unit

MUX1: 3×1-multiplexer is used to forward one (40-bits) word to the MUX2 unit according to the following
truth table shown in Table 2.

MUX2: 2×1 Multiplexer used to organize the seven-segment operation to display only four digits at the time.

The multiplexer passes the least significant four digits of an FP number when 7 0Sw  and the most

significant four digits when 7 1Sw  .

Seven segment display: This unit accepts 20-bits input organized as 5-bits per digit and mapped it to the

seven-segment output through the seven lines (0 1 7, , ,seg seg seg). In addition, this unit generates four

signals (0 3, ,An An) which are used to activate the digits sequentially at 1kHz frequency rate.

Table 2. MUX1 input-output switching
Sw6 Sw5 Sw4 Output

0 0 1 Number1

0 1 0 Number2

1 0 0 Result

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 3, September 2020 : 1480 - 1489

1486

Figure 8. Flowchart of IEEE single-precision floating point for add/subtract operation

5. RESULTS AND DISCUSSION

In this section, the modules level design of FP arithmetic is implemented on Diglent Nexys3 Sparton-6

FPGA board. The language used to implement the FP algorithm and I/O mapping is VHDL. We made the

implementation codes as well as other programming resources under GNU license and available on the GitHub link

[25]. To make VHDL code readable we highlighted the modules-level code design by inserting comments that match

the descriptions given in Section 3. The Integrated Development Environment (IDE) used to run VHDL scripts is

called Integrated Synthesis Environment (ISE) design suite. Table 3 shows device summary generated by ISE design

suite. The first column described the slice logic descriptions as well as the available number of these resources and

how much is used in our implementation. All resources usage falls within reasonable range. The “Number of LOCed

IoBs” usage is 100% since we used all input/output resources of FPGA board for validation purposes. To verify the
performance of the proposed module level design we used ModelSim which is multi-language HDL simulation tool

by Mentor Graphics. Figure 9 shows the tests for all special cases of FP arithmetic such as  , NaN and de-

normalized number states. Figure 10 and Figure 11 show examples for FP add/subtract operations according to IEEE

FP standard format. Other examples and tests are also available on the GitHub link [25].

Table 3. Device utilization summary
Slice Logic Utilization Used Available Utilization

Number of Slice Registers 368 18,224 2%

Number used as Flip Flops 366

Number used as Latches 0

Number used as Latch-thrus 0

Number used as AND/OR logics 2

Number of Slice LUTs 1,179 9,112 12%

Number used as logic 1,173 9,112 12%

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Design and implementation of fast floating point units for FPGAs (Mohammed Falih Hassan)

1487

Slice Logic Utilization Used Available Utilization

Number using O6 output only 988

Number using O5 output only 15

Number using O5 and O6 170

Number used as ROM 0

Number used as Memory 0 2,176 0%

Number used exclusively as route-thrus 6

Number with same-slice register load 5

Number with same-slice carry load 1

Number with other load 0

Number of occupied Slices 451 2,278 19%

Number of MUXCYs used 148 4,556 3%

Number of LUT Flip Flop pairs used 1,303

Number with an unused Flip Flop 942 1,303 72%

Number with an unused LUT 124 1,303 9%

Number of fully used LUT-FF pairs 237 1,303 18%

Number of unique control sets 14

Number of slice register sites lost to control set restrictions 58 18,224 1%

Number of bonded IOBs 27 232 11%

Number of LOCed IOBs 27 27 100%

Number of RAMB16BWERs 0 32 0%

Number of RAMB8BWERs 0 64 0%

Number of BUFIO2/BUFIO2_2CLKs 0 32 0%

Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%

Number of BUFG/BUFGMUXs 3 16 18%

Number used as BUFGs 3

Number used as BUFGMUX 0

Figure 9. Simulation results for special cases FP numbers

Figure 10. Simulation results for addition of two FP numbers

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 3, September 2020 : 1480 - 1489

1488

Figure 11. Simulation results for subtraction of two FP numbers

6. CONCLUSION
In this work, an open-source for IEEE single-precision floating-point algorithm is implemented on

the Xilinx Nexys 3 Spartan-6 FPGA board. The overall system consists of three main parts. The first part is

the I/O management unit; the purpose of this unit is to organize entering data to the board. The second part is

the implementation of a single-precision FP ALU and the third part, is the sub-system that organized

displaying data on the seven-segment display. We implemented the system using VHDL code and tested it

successfully on the Nexys-3 board as well as on ModelSim. The proposed work can be used for test and

development of FP arithmetic on low-cost FPGA platforms that do not support FP framework.

REFERENCES
[1] A. Awab, A. Ab Rahman, M. Rusli, U. Sheikh, I. Kamisian and G. Meng, "HEVC 2D-DCT architectures

comparison for FPGA and ASIC implementations", TELKOMNIKA (Telecommunication Computing Electronics
and Control), vol. 17, no. 5, p. 2457, 2019. Available: 10.12928/telkomnika.v17i5.12815.

[2] M. Jasim Fadhil, R. Ali Fayadh and M. K. Wali, "Design and implementation a prototype system for fusion image
by using SWT-PCA algorithm with FPGA technique", International Journal of Electrical and Computer
Engineering (IJECE), vol. 10, no. 1, p. 757, 2020. Available: 10.11591/ijece.v10i1.pp757-766.

[3] Hormigo, J. and Villalba, J. "HUB Floating Point for Improving FPGA Implementations of DSP
Applications." IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp.319-323, 2017.

[4] A. Hamdoon, Z. Mohammed and E. Mohammed, "Design and implementation of single bit error correction linear
block code system based on FPGA", TELKOMNIKA (Telecommunication Computing Electronics and Control),
vol. 17, no. 4, p. 1785, 2019. Available: 10.12928/telkomnika.v17i4.12033.

[5] J. Hormigo and J. Villalba, “Simplified floating-point units for high dynamic range image and video systems,” in
Consumer Electronics (ISCE 2015), 19th IEEE Int. Symp. on, pp. 1–2, 2015.

[6] F. Silaban, S. Budiyanto and W. Raharja, "Stepper motor movement design based on FPGA", International Journal of
Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 151-159, 2020. Available: 10.11591/ijece.v10i1.

[7] B. Kurniadhani, S. Hadiyoso, S. Aulia and R. Magdalena, "FPGA-based implementation of speech recognition for

robocar control using MFCC", TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17,
no. 4, p. 1914, 2019. Available: 10.12928/telkomnika.v17i4.12615.

[8] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,” Design Test of Computers,
IEEE, vol. 28, no. 4, pp.18–27, 2011.

[9] J. Hormigo and J. Villalba, “Optimizing DSP circuits by a new family of arithmetic operators,” in Signals, Systems
and Computers, Asilomar Conference on, pp. 871–875, 2014.

[10] E. Nurvitadhi, et al., “Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?,” Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays - FPGA 17, 2017.

[11] A. Abdelkareem, S. Mohammed Saleh and A. D. Jasim, "Design and Implementation of an Embedded System for
Software Defined Radio", International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6,
p. 3484, 2017. Available: 10.11591/ijece.v7i6.pp3484-3491.

[12] S. D. Mu˜noz and J. Hormigo, “Improving fixed-point implementation of QR decomposition by rounding-to-
nearest,” in Consumer Electronics (ISCE 2015), 19th IEEE Int. Symp. on, pp. 1–2, 2015.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Design and implementation of fast floating point units for FPGAs (Mohammed Falih Hassan)

1489

[13] A. Ehliar, “Area efficient floating-point adder and multiplier with IEEE-754 compatible semantics,” in Field-
Programmable Technology (FPT), 2014 International Conference on, pp. 131–138, 2014.

[14] M. Langhammer and B. Pasca, “Design and implementation of an embedded FPGA floating point DSP block,” in
Computer Arithmetic (ARITH), 2015 IEEE 22nd Symposium on, pp. 26–33, 2015.

[15] S. Churiwala, Designing with Xilinx FPGAs: using Vivado. Cham: Springer, 2017.
[16] J. S. Parab, R. S. Gad, and G. M. Naik, “Hands-on experience with Altera FPGA development boards,” New Delhi,

India: Springer, 2018.
[17] S. Amin-Nejad, K. Basharkhah, and T. A. Gashteroodkhani, “Floating Point versus Fixed point Tradeoffs in FPGA

Implementations of QR Decomposition Algorithm,” European Journal of Electrical Engineering and Computer
Science, vol. 3, no. 5, 2019.

[18] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov and A. Kalinin, "Fixed-Point Convolutional Neural Network
for Real-Time Video Processing in FPGA," 2019 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, pp. 1605-1611, 2019.

[19] D. L. N. Hettiarachchi, V. S. P. Davuluru and E. J. Balster, "Integer vs. Floating-Point Processing on Modern
FPGA Technology," 2020 10th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, pp. 0606-0612, 2020.

[20] J. Villalba, J. Hormigo and S. González-Navarro, "Fast HUB Floating-Point Adder for FPGA," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 1028-1032, 2019.

[21] R. P. Rao, N. D. Rao, K. Naveen and P. Ramya, "Implementation Of The Standard Floating Point Mac Using Ieee
754 Floating Point Adder," 2018 Second International Conference on Computing Methodologies and
Communication (ICCMC), Erode, pp. 717-722, 2018.

[22] M. Shirke, S. Chandrababu and Y. Abhyankar, "Implementation of IEEE 754 compliant single precision floating-
point adder unit supporting denormal inputs on Xilinx FPGA," 2017 IEEE International Conference on Power,
Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, pp. 408-412, 2017.

[23] B. Mathis and J. Stine, "A Novel Single/Double Precision Normalized IEEE 754 Floating-Point Adder/Subtracter," 2019
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, pp. 278-283, 2019.

[24] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point Arithmetic, 2008.

[25] Hassan, M. (2019). Design-and-Implementation-of-Floating-Point-Units-for-FPGAs. [online] GitHup. Available at:
https://github.com/mufalh/Design-and-Implementation-of-Floating-Point-Units-for-FPGAs [Accessed 14 Nov. 2019].

https://github.com/mufalh/Design-and-Implementation-of-Floating-Point-Units-for-FPGAs

