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 The quasi-Newton equation is the very foundation of an assortment of  
the quasi-Newton methods for optimization minimization problem. In this 
paper, we deriving a new quasi-Newton equation based on the second-order 

Taylor’s series expansion. The global convergence is established underneath 
suitable conditions and numerical results are reported to show that the given 
algorithm is more effective than those of the normal BFGS method. 
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1. INTRODUCTION  

The quasi-Newton algorithm is one of the more successful algorithms for unconstrained nonlinear 

programming [1]. These methods, which use the updating formulas for approximation of the Hessian.  

To minimize a multi-variable nonlinear function this our objective : 

 
nR  x,  )( xfMin  (1) 

 

where f  is twice differentiable. Throughout the paper, we define by kB  is a nonnegative definite matrix 

that estimates the Hessian matrix )(2

kk xfQ   of )( kxf  and )( kk xfg   is the gradient of 

)( kxf . More details can be found in [2]. For most optimization algorithms, the search for the minimizer of 

(1) is carried out by using : 

 

kkkk dxx 1  (2)  

 

where k  is the step size, and kd  is the search direction. Moreover, the search direction kd  of  

the quasi-Newton methods often has the form : 

 

0 kkk gdB  (3) 
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It estimates kB  update formula, we will focus on the BFGS method which has proved to be  

the most effective of all quasi-Newton methods : 
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It’s also well known that the matrix 
1kB  is generated by (4) to satisfy the secant equation : 

 

kkk ysB 1  (5) 
 

where kkkkk dxxs  1  and kkk ggy  1 , for more details see [3, 4].  

It is easy to take advantage of the following relationships : kkkkk HBysB  ,1  where 

kk HB 1
, then the famous BFGS formula is designed by : 
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For details see [5]. When the general function no one has proved the convergence property of  

the BFGS method. To acquire improved quasi-Newton methods, many modified quasi-Newton equations 

have been proposed ([6-10], among others) and established its convergence property. Using second-order 

Taylor’s series approximation of the function to derivation the a new quasi-Newton equation and we study 
convergence property and numerical results. 

 

 

2. DERIVING QUASI-NEWTON EQUATIONS 

We deriving new quasi-Newton equations based on the second-order Taylor’s series expansion and 

is defined by :  
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(7) 

 

Using exact line search, we get : 
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2

1
)()( 1    (8) 

 
which implies that : 

 

))()((2 1 kkk

T

k xfxfQss   (9) 

 

Add and subtract from the right tip the k

T

k ys , we get : 
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The choice 1kB  is key to the approximate effect of the Hessian matrix Q  : 
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 (11) 

 

which implies a new QN equation and as follows : 
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where kv  is any vector such that 0k

T

k vs . Now we Applying the a new quasi-Newton equation  in  

the two cases : 

Case i : If kk yv  , we get : 
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Case ii : If 1 kk gv , we get : 
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The new algorithm can be staged formally as follows. 

New Algorithm : 

 

Stage 1 : Select 
nRx 0
 and IH 0 . Set 0k . 

Stage 2 : Stop if 0kg . 0
~

k

T

k ys  

Stage 3 : Generate   kd  by kkk gHd  . 

Stage 4 : Find a k  based on the Wolfe condition satisfies : 
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kkkkkk dgxfdxf   )()(   (15) 
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Stage 5 :  Variable  update,  kkkk dxx 1 . 

Stage 6 : If  0
~

k

T

k ys , find update 1kH  by the formula (6) and (12), otherwise let 

kk HH 1 .  

Stage 7 :  Let  1 kk . Go to stage 2. 

 

We verify the positive definite property of the update formula for the quasi-Newton method in  

the next theorem. 

Theorem 1. 

If and if only 0
~

k

T

k ys , then the update 1kH  is positive definite. 

 

Proof :  

The gradient-difference vector ky , we define by : 
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Multiplying above equation by 
T

ks , we obtain : 
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From above equation we get :  
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~
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Using first Wolfe condition in above equation, we obtain : 
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In fact, 0 k

T

kkk

T

k gdgs  , such that : 
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The proof is complete. 

 

 

3. CONVERGENCE ANALYSIS 

Now by using under the following assumption, we twist to the convergence result of the new 

methods. 

Assumptions : 

a) f  is bounded on the set  )()( 0xfxfRxS n   and is bounded below on 
nR . 

b) If there exits a nonnegative constant L  such that :  

 

RwzwzLwgzg  ,,)()(  (22) 

 

and g  is called Lipschitz continuous and we get : 

 

Rxxg  ,)(   (23) 

 

If  )( kxf  is a decreasing, then  kx  is contained in R  and the existence of *x  we get : 

 

)()(lim *xfxf k
k




 (24) 

 

In veracity, that sequence kx  is restricted, there exist some positive constant   such that : 

 

 


xxxxsk
. (25) 

 

For more details see [11]. 

 

Theorem 2. 

If the following inequality holds : 
 

kkk sasB 1     and   
2

22 kk

T

k sasBs  ,  (26) 

 

where 01 a  and 02 a  are constants and the  kx  be generated by new methods. For infinitely ,k  

then we get: 
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Proof : 

Using (26) and adding with ,kkk dBg   we gives : 

 

kkk dagda 12      and   
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The two conditions form Wolfe rule (15), (16) and (28) to obtain : 
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Then (29) implies that : 
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Accordingly (24), we have : 
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from which it follows that : 
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merge them with Wolfe law (15) leads : 
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We obtained : 
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above equally with (34) give that : 
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Merge (35) with (28) we get the finale (27). If f  is non-convex function, we need some 

assumptions on the update, may can lose the positive definiteness. For every k , we define the index set K  
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where 0  is constant and 0  is bounded. The next lemma quoted in [12] is very significant to study 

the convergence property. 
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Lemma 1. 

If BFGS method with Wolfe condition is applied to a continuously differentiable function f that is 

bounded below, and if there exists a constant M such that the inequality holds : 
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then : 
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A cautious update rule similar to the above lemma. 

 

Theorem 3. 

Suppose  kx  be generated by the new method. Then we get : 
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Proof : 

In view of Theorem 2., sufficiently show that (26) holds for infinitely k. If K  is a finite set,  

then kB  is a constant-matrix, obviously, (26) satisfies. Now, if K  is a infinite we will deduce a 

contradiction with there exists 0  such that :  

 

kg  (40) 

 

It follows from (36), we obtain : 
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Using  definition of 
~

ky , we have : 

 

k

k

k

T

k

k

T

kkk
kk

y

v
vs

ysff
yy




  )(2 1

~

 (42) 

 

It follows from (22) and (42) we obtain : 
 

kkk sLyy 
~

 (43) 

 

This, together with (41), lead to : 
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Applying lemma 1, to the  
KkkB


, there exist, 

1a  and 
2a , we obtain (21) for infinitely many k . 

Then, proof is finished. 

 

 

4. NUMERICAL EXPERIMENTS 

It has been programmed subroutine Matlab to test the modified BFGS algorithm presented in  
the previous section. We tested the algorithm on the following problems that have been taken from [13]. 

Different test functions have been used in different researchs such as [14-24]. 

All the problems are being resolved successfully, and numbers are given duplicates and job 

evaluation in Table 1. We have solved these problems through the BFGS algorithm, as shown in Table 1 

 the numerical results of the new algorithm. The Himmeblau [25], stop rule is used : If ,10)( 5kxf  let 

;)(/)()(1 1 kkk xfxfxfstop   Otherwise, let )()(1 1 kk xfxfstop . For every problem,  

if kg  or 5101 stop is satisfied, the program will be stopped. To compare the efficiency of roads in 

Table 1, we adopt the number of iterations (NI) and the number of evaluations of jobs (NF). Numerically 

results show that the new algorithm is a little better than the usual BFGS algorithm in this group of test 

problems. 

 

 

Table 1. Numerical results 

  BFGS algorithm BFGS with 
kk yv   BFGS with 

1 kk gv  

Problems n NI NF NI NF NI NF 

Froth 2 9 26 9 26 11 32 

Badscp 2 43 166 34 125 3 31 

Badscb 2 3 30 3 30 3 30 

Beale 2 15 50 13 43 13 38 

Jensam 2 2 27 2 27 2 27 

Helix 3 34 113 24 80 17 49 

Bard 3 16 54 17 56 12 36 

Gauss 3 2 4 2 4 2 4 

Gulf 3 2 27 2 27 2 27 

Box 3 2 27 2 27 2 27 

Sing 4 20 60 14 44 11 35 

Wood 4 19 61 19 61 7 22 

Kowosb 4 21 65 23 117 10 28 

Bd 4 17 54 16 50 8 27 

Osb1 5 2 27 2 27 2 27 

Biggs 6 25 72 8 50 9 27 

Osb2 11 3 31 3 31 3 31 

Watson 20 31 102 34 108 6 20 

Rosex 100 231 806 46 197 33 765 

Singx 400 64 209 126 397 10 32 

Pen1 400 2 27 2 27 2 27 

Pen2 200 2 5 2 5 2 5 

Vardi 100 2 27 2 27 2 27 

Trig 500 9 33 8 28 14 42 

Bv 500 2 4 2 4 2 4 

Ie 500 6 16 7 19 13 37 

Band 500 57 281 15 81 5 16 

Lin 500 2 4 2 4 2 4 

Lin1 500 3 7 3 7 3 7 

Lin0 500 3 7 3 7 3 7 

Total  649 2422 445 1736 214 1491 

 
 

Computational results show that a reduction of (31-67)% and (28-38)% in terms of the total number 

of iterations and function evaluations respectively. Relative efficiency of the new algorithms as shown  

in Table 2.  

 

 

Table 2. Relative efficiency of the new algorithms 

 BFGS algorithm BFGS with  
kk yv   BFGS  with  

1 kk gv  

NI 100   % 68.56  % 32.97  % 

NF 100   % 71.67  % 61.56  % 
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5. CONCLUSIONS 

In this paper, we deriving a new quasi-Newton equation based on the second-order Taylor's series 

approximation of the function. We conclude by affirming that the arithmetical findings in this work was 

effective to solving optimization problems. 
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