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 Automatic License Plate Detection and Recognition (ALPD-R) is an 

important and challenging application for traffic surveillance, traffic safety, 

security, services purposes and parking management. Generally, traditional 

image processing routines have been used in ALPD-R. Although the general 

approaches perform well on ALPD-R, new and efficient approaches are 

needed to improve the detection accuracies. Thus, in this paper, a new 

approach, which is based on fusing of multiple Faster Regions with 

Convolutional Neutral Network (Faster- RCNN) architectures, is proposed. 

More specially, the Deep Learning (DL) is used to detect license plates in 

given images. The proposed license plate detection method uses three Faster- 

RCNN modules where each faster RCNN module uses a pre-trained CNN 

model namely AlexNet, VGG16 and VGG19. Each Faster-RCNN module is 

trained independently and their results are fused in fusing layer. Fusing layer 

use average operator on the X and Y coordinates of the outputs of the Faster-

RCNN modules and maximum operator is employed on the width and height 

outputs of the Faster-RCNN modules. A publicly available dataset is used in 

experiments. The accuracy is used as a performance indicator of  

the proposed method. For 100 testing images, the proposed method detects 

the exact location of license plates for 97 images. The accuracy of the 

proposed method is 97%. 

Keywords: 

Deep learning 

Faster-RCNN 

License plate detection  

Vehicle images 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Naaman Omar, 

Department of Information Technology, 

Duhok Polytechnic University, 

61 Zakho Road, Mazi Qr ،1006, Duhok 42001, Iraq. 

Email: ijeecs.iaes@gmail.com 

 

 

1. INTRODUCTION  

Deep Learning (DL) concerns with processing information utilizing deep networks. It is a part  

of machine learning approaches. In its earlier appearance in 1943, DL was termed by McClulloch and Pitts as 

“cybernetics”. DL is superior in drawing out-comes from complex problems. Convolutional neural network 

(CNN) is an instance of deep learning strategy is mimicking brain function in processing in-formation. 

Recurrent Neural Network (RNN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN) 

are architecture types of DL[1,2]. 

Automatic License Plate Recognition (ALPR) is an important topic in intelligent transportation 

applications. ALPR can be used to identify the vehicles from its license plate. ALPR has potential to be used 

in variety of application areas such as traffic surveillance, traffic safety, security, services purposes and 

parking management [3-6]. Lighting and weather conditions effect ALPR system significantly [7,8].  

An ALPR system generally composed of four main blocks such as image capturing block, license plate 

detection block, character segmentation block and character recognition block, respectively [9-12].  

The license plate detection, which is in the second block of the ALPD, can be seen as the most important 
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part. Because, it effects the recognition performance of subsequent parts of the ALPD [13-16]. ALP systems 

are in the demand and in the last two decades, so many works have been carried out on it. In this work, as we 

concentrated on the license plate detection, the literature that are related with the license plate detection is 

reviewed.  

Because of increasing the vehicles number, the traffic violation and traffic control become a serious 

and challenging problem in all over the word. Moreovere, the vehicle detectin and recognition become 

difficult from vehicle LP.Various dataset used for training evaluation algorithms [17,18]. In last decate, 

different algorithms and methods have been prpposed for detection and recognition vehicle LP to date,  

such as VGG16, VGG19, CNN [19]. 

Ho et al. [20] proposed a license plate detection method for online applications. The proposed 

method was composed of two stages. Authors used Adaboost method, support vector machine (SVM) 

classifier and scale invariant feature transform (SIFT) descriptors for ALPD. In the first stage the Adaboost 

method was used to localize the license plate region. The SIFT features were extracted from the characters of 

the license plate region and SVM classifier was used to recognize the license plate. Authors used a dataset 

involves 800 images in their experiments. The reported accuracy was 88%. Katata et al. proposed a method 

to detect license plate of a given image based on Gabor filters and neural networks (NNs) [21]. The proposed 

method was composed of three steps. The first step covers the generation of the feature vectors for both 

training and testing images. Authors used contrast limited adaptive histogram equalization (CLAHE) before 

Feature Extraction (FE) for improving the quality of the input images. Gabor filters were used feature 

extraction and NNs was used for classification. 58 Tunisian vehicles images were used in experiments and 

acceptable results were reported by the authors.  

Kim et al. presented a method for license plate detection through two stages[16]. In the first stage, 

the region of vehicle was located in whole image by using CNN algorithm to specify the region of interest 

(ROI) easily. In the second stage, the detection of the license plate candidates from vehicle region was 

accomplished by using the hierarchical sampling method. The false positive license plate regions were 

eliminated by using deep CNN. The performance of the method was evaluated on Caltech dataset.  

The obtained precision and recall scores were 98.39% and 96.83%, respectively. Yuan et al. proposed  

a method to detect vehicle license plate [4]. In the proposed approach line density filter was used to find the 

candidate regions. Then, the positive (true) license plate was identified based on linear SVMs.  

For performance evaluation, the Caltech license plate dataset was used. Authors also used another dataset 

that contains 3828 images. The authors reported 96.62% average accuracy score.  

Zhao et al. proposed a method which was composed of the Haar-like cascade classifier and 

Adaboost for vehicle license plate detection [13]. The dataset, which was used in experiments, was collected 

from different environments in China. The accuracy of the proposed method was 89.5%. Masood et al. 

proposed an algorithm for LPDR based on deep Convolutional Neural Networks (CNNs) [22]. The algorithm 

was applied under various weather conditions and license plate shapes. The proposed algorithm performed 

detection, character segmentation and recognition. Two different datasets have been used to evaluate the 

performance, 328 images from USA and 550 images from European. The performance was 99.09% and 

99.64% for USA and European datasets, respectively. 

Azam et al. proposed an algorithm to detected vehicle license plate region in different hazardous 

image conditions [10]. Various pre-processing steps were applied on input image for noise removal and 

contrast enhancement. Authors [10] used Radon transform and tilt correction for detection of the license 

plate. A dataset that contains 850 vehicle images for different conditions were used in experiments and  

the obtained accuracy score was 94%. Naimi et al. proposed an algorithm for license plate detection for 

various nation and multi criterions plate in different condition [11]. The proposed work was based on deep 

learning where self-taught features were used for detection of the license plate. The authors combined region 

proposal network with CNN to improve the performance. Firstly, features were extracted by CNN and 

presented the feature map to the RPN. Secondly, soft-max classifier was used to detect the LP region. 5000 

color images were used in experiments and 99% accuracy score was obtained.  

Li et al. proposed an algorithm for vehicle license plate detection and recognition using deep CNN 

and LSTMs [7]. In the proposed approach, two CNN classifiers were used, one was used for detection of the 

characters from images, and the second one was used to remove false positive. Caltech cars dataset and 

AOLP dataset were used for detection performance. The achieved performances were 97.56% precision and 

95.24% recall. Lalimi et al. presented an automatic algorithm for vehicle license plate detection [23].  

The input images were enhanced by using edge density and intensity variance. Vertical edge detection, 

morphological filtering and geometrical features were used to obtain the correct location of license plate.  

The dataset used in this paper consists of 425 collected images. The access rate achieved for VLPD in this 

algorithm is 94.12%.  
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In this paper, a novel approach, which is based on DL, is proposed for detection of license plates in 

given images. The proposed method does not use any pre-processing for improving the quality of the input 

images. More specifically, the proposed approach uses Faster RCNN for detection of the license plates [15]. 

Three Faster RCNN modules are used where each of them uses a pre-trained CNN model such as AlexNet, 

VGG16 and VGG19, respectively. Each faster RCNN produces a rectangle that is defined by four parameters 

such as X and Y coordinates of the upper corner of the rectangle and width (W) and height (H) of the 

rectangle. Thus, three rectangles are produced by three faster RCNN models. A fusion layer is used after 

faster RCNN models. The fusion is handled by using average operator on column wise for X and Y 

coordinates from all faster RCNNs and maximum operators is used on column wise for W and H values that 

obtained from all faster RCNNs. A dataset, that contains 502 images, is used in our experiments. The images 

were collected from various environments and various conditions for making the dataset more realistic. 

These all images are used for training of the faster RCNN models and the flipped and rotated versions of the 

images are used in testing of the proposed method. The obtained results show that the proposed method is 

quite successful in detection of the license plates.  

a) The original contribution of this work is as following. 

The pre-trained CNN models based faster RCNN models are generally used in various object 

detection applications. However, a fusion operation over multiple faster RCNN models has not been applied 

on license plate detection until so far. The fusion operation is justified both mathematically and 

experimentally. While single faster RCNN models produce low detection rates, the fused model highly 

improves the experimental results.  

The rest of the paper is organized as follow. Next section briefly introduces the theory of the faster 

RCNN. Section 3 describes the proposed method in detail. Experimental works and results are given in 

Section 4. The paper is concluded in Section 5.  

 

 

2. PROPOSED METHOD 

The proposed license plate detection system uses multiple faster regional convolutional neural 

networks (Faster RCNN) for efficient detection of the license plate region on a given image. Figure 1 

shows the illustration of the proposed method.  

 

 

 
 

Figure 1. The illustration of the proposed method 

 

 

The proposed method does not use any pre-processing stage for improving the quality of the input 

image. Because, the faster RCNN models are quite robust against the noise and other effects. This also saves 

the computation time of the proposed method. Three Faster RCNN modules are used where each of them 

uses a pre-trained CNN model. As seen in Figure 1, the fusion layer is in the heart of the proposed method.  

It fuses the results that are fed from all the faster RCNN modules. Each Faster RCNN module produces  

a rectangular region (X, Y coordinates and the width and height of the rectangle region) as the location of the 

license plate. This region might not be located on the exact location of the license plate so fusion layer is 

used to fix this problem. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Fused faster RCNNs for efficient detection of the license plates (Naaman Omar) 

977 

Figure 2 illustrates the VGG19, VGG16 and AlexNet architecture. The first Faster RCNN model 

uses the well-known AlexNet model. AlexNet model architecture contains 8 layers. 5 layers of the AlexNet 

model is named as convolutional layers and 3 layers are called fully connected layer. Add to that, it contains 

three pooling layers and five ReLU layers come after convolutional layers. 
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Figure 2. The structures of the AlexNet, VGG16 and VGG19 architectures 

 

 

VGG16 is another pre-trained deep model which has 13 convolutional layers and 3 fully connected 

layers. It works very well and has good performance with large datasets, because it uses 3×3 small 

convolution filters in all layers. The VGG19 model is constructed as a deeper version of the VGG16 model 

for more performance and better output. It contains 16 convolutional layers and 3 fully connected layers.  

An illustrative example of the proposed method is given in Figure 3. 

 

 

    
(a) (b) (c) (d) 

 

Figure 3. The effect of the fusing layer, (a) The result of Faster RCNN module 1, (b) The result of Faster 

RCNN module 2, (c) The result of Faster RCNN module 3, (d) The result of fusing layer 

 

 

Figure 3 (a) shows the output of the first faster RCNN module. The license plate region is indicated 

with a yellow bounding box. As seen, the first faster RCNN module could not obtain the exact location of the 

license plate region. One character is not covered by the yellow bounding box. Moreover, as given in  

Figure 3 (b), the second faster RCNN module can detect only a small region of the license plate region as 

shown by the red bounding box. The most successful detection is handled by the third faster RCNN module as 

shown in the Figure 3 (c). Almost all license plate region is covered as indicated by the green bounding box. 

Finally, the Figure 3 (d) shows the fused results where the final region is indicated by a magenta bounding box.  

The fused result is announced as the output of the proposed method. The fusing operation is given as following; 
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where X and Y show the upper corner coordinate of the bounding box and W and H show the width and 

height of the bounding box, respectively. As given in (1)-(3), the bounding boxes from all Faster RCNN are 

saved and the fused bounding box is defined in (4). The average operator is used on column wise for X and Y 

coordinates and the maximum operator is used on column wise for W and H values. This fusing procedure 

ensures the optimum location of the license plate. 

It is worth of mentioning that the proposed method has training and testing phases. Initially, a 

training image set is used to train the all faster RCNN modules. After training of the all faster RCNN 

modules, the testing phase can be applied on the testing images. 

 

 

3. RESEARCH METHOD 

3.1.  Faster region with convolutional neural network 

Explaining The faster RCNN architecture was proposed to reduce the running time of the object 

detection in a given image. The Regional Proposal Network (RPN) is in the heart of the Faster RCNN 

structure [24, 25]. RPN is composed of four layers such as input layer, region proposal layer, feature 

extraction layer and classification layer, respectively. The CNN architecture is used in feature extraction 

layer. In Faster RCNN, the trained is carried out with multiple of the proposed regions instead of a single 

region, which makes the training procedure faster than the previous architecture. In faster RCNN, the RPN’s 

and fast RCNN’s convolutional layers are combined in one network. Fast RCNN has several advantages, 

such as high detection quality, using multi task loss in training stage, all layers in network can be update by 

training, features extraction no need storage disk and faster speed [26, 27]. Thus, the computational time  

of proposed network is reduced. 

 

3.2.  Region proposal network (RPN) 

Region proposal network (RPN) aims to generate potential regions and it employs a network  

to determine if the potential regions contain any objects [24, 25]. The region proposals are generated by the 

selective search algorithm. The produced regions are ranked by the RPN and the ones most likely containing 

objects are selected. The region proposal boxes are called as anchors. Anchors are important in Faster  

R-CNN architecture. Generally, there are 9 anchors in Faster RCNN architecture at a position of an image. 

The anchors are then examined by a classifier to check the probability of objects. In other words,  

RPN predicts the possibility of an anchor being background or foreground, and refine the anchor.  

The training of the Faster RCNN is carried out with a training dataset and the corresponding ground-

truth boxes. In other words, the ground-truth boxes are used to label the anchors. The basic idea in Faster 

RCNN is that the anchors having the higher overlaps with ground-truth boxes are labelled as foreground and 

the ones with lower overlaps are labelled as background. We trained three networks AlexNet, VGG16 and 

VGG19 separately, used baza_slika, which is a publicly available dataset [28, 29].  

 

 

4. EXPERIMENTAL WORKS AND RESULTS 

The experiments were conducted on MATLAB with a computer having an Intel Xeon E5-1650 v4 

CPU and 64 GB memory. A publicly available dataset was used in experiments that contains 502 images 

[29]. The vehicle images were collected under various environmental conditions such as cloudy day,  

rainy day and night lighting. The images cover different types of vehicle such as cars, trucks, buses and mini 

buses. All 502 images were used in training of the proposed approach and for testing procedure, randomly 

selected 100 images were flipped and rotated in 5 and 10 degrees. While Figure 4 shows some training 

sample images, Figure 5 shows some test sample images.  

 
 

      

      
 

Figure 4. Some sample images that were used in training of the proposed method 
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Figure 5. Some sample images that were used in test of the proposed method 
 

 

As it was mentioned earlier, three pre-trained CNN models were used in Faster RCNN modules. 

The training parameters of the faster RCNN modules set as following. The stochastic gradient descent with 

momentum optimizer was utilized in the training process. Maximum epoch, mini-batch size, and initial 

learning rate were set to 10, 1, and 0.001, respectively. In addition, the positive and negative overlap ranges 

were scaled to the [0 - 0.3] and [0.6 - 1] ranges, respectively. The number of region proposals to randomly 

sample from each training image was selected as [256 128]. Box pyramid scale, which was named as anchor 

box pyramid scale factor, is also 1.2. 
 

 

Table 1. The training procedure of the faster RCNN with VGG16 model 
Epoch Iteration Time Elapsed Mini-batch Loss Mini-batch Accuracy Mini-batch RMSE Base Learning Rate 

10 4500 00:22:53 0.0131 100.00% 0.37 0.0010 

10 4550 00:23:08 0.0219 100.00% 0.54 0.0010 

10 4600 00:23:22 0.0468 99.22% 0.76 0.0010 

10 4650 00:23:36 0.0138 100.00% 0.36 0.0010 

10 4700 00:23:50 0.0233 100.00% 0.39 0.0010 

10 4750 00:24:04 0.0200 100.00% 0.36 0.0010 
10 4800 00:24:18 0.0172 100.00% 0.39 0.0010 

10 4850 00:24:32 0.0305 99.61% 0.47 0.0010 

10 4900 00:24:46 0.0270 100.00% 0.44 0.0010 
10 4950 00:25:00 0.0153 100.00% 0.44 0.0010 

 

 

Table 1 shows the training iterations of the Faster RCNN. The VGG16 model was used in  

Faster RCNN structure. The columns of the Table 1 show epoch, iteration, time elapsed, Mini-batch loss, 

Mini-batch accuracy, Mini-batch RMSE and base learning rate, respectively. As seen in Table 1, the training 

procedure reached the maximum accuracy (100%) at 10 epoch and 4950 iterations. The mini-batch RMSE 

value was 0.44. The learning rate was not changed during the iterations. The obtained test results are given in 

Figures. 6, 7, 8 and 9, respectively. While Figure 6 shows the AlexNet based faster-RCNN’s results,  

Figures 7, 8 and 9 show the VGG16 based faster RCNN’s results, VGG19 based faster RCNN’s results,  

and the fused results. The detected license plate regions were indicated with colored rectangles for each 

method. Figure 6 shows the test results for pre-trained AlexNet model based faster-RCNN. As seen in given 

sample images, the “yellow” rectangles were used to locate the license plate regions. While all car’s license 

plates were detected correctly, the license plates for tracks were not detected. 
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Figure 6. Shows the testing results of the AlexNet model 

 

 

Figure 7 shows the detection results with “red” rectangles that were obtained with VGG16 based 

faster RCNN. As seen in Figure 7, all vehicle’s license plate regions were detected correctly by the VGG16 

based faster RCNN. Figure 8 also shows the detection results with “green” rectangles for VGG19 based 

faster RCNN. As seen in Figure 8, except one track, all other vehicle’s license plate regions were detected 

correctly by the VGG19 based faster RCNN. Finally, Figure 9 shows the fused results from previous faster 

RCNN models. The “magenta” color was used for determining the exact location of the license plates for all 

vehicles. As seen in Figure 9, all vehicles license plate locations were detected correctly. 

 

 

 

 
 

Figure 7. Shows the testing results of the VGG16 model 

 

 

 

 
 

Figure 8. Shows the testing results of the VGG19 model 
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Figure 9. Shows the testing results of the fused model 

 

 

Table 2 shows the obtained result with individual Faster-RCNN modules and fused result. As seen 

in Table 2, the AlexNet model produces 74% accuracy score which is the worst among all results.  

The second worst result 87% is obtained by the VGG19 model. VGG16 model produces 93% accuracy score 

which is better result than AlexNet and VGG19 models. The Fusing Layer produces the best result  

which is 97%. 

 

 

Table 2. Performance comparison of individual Faster-RCNN modules and fusing layer 
Pre-trained CNN models Accuracy (%) 

AlexNet 74 

VGG16 93 

VGG19 87 
Fusing Layer 97 

 

 

5. CONCLUSION  
This paper proposes a novel method for detection of the license plates in a given vehicle images. 

The proposed method is based on deep faster RCNN models. Recently, deep learning has become a hot topic 

in computer vision and image processing communities. We opted to use multiple faster RCNN models where 

pre-trained deep CNN models are used. Three pre-trained CNN models namely AlexNet, VGG16 and 

VGG19 were used in faster RCNN modules. The results from all deep models were then fused for obtaining 

a final license plate region. The experiments on the publicly available vehicle license plate dataset showed 

that proposed fused results outperformed individual faster RCNN modules. The obtained total accuracy was 

97%. In our future works, we are planning to apply other deep models in license plate detection. In addition, 

license plate recognition will be in our future works.  
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