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 Compared to a time-based maintenance schedule, condition-based 

maintenance provides better diagnostic information on the health condition 

of the different wind turbine components and subsystems. Rather than using 

an offline condition monitoring technique, which require the WT to be taken 

out of service, online condition monitoring does not require any interruption 

on the WT operation. The online condition monitoring system uses different 

types of sensors such as vibration, acoustic, temperature, current/voltage etc. 

Using a machine learning approach, we aim to establish a data driven fault 

prognosis framework. Instead of traditional wired communications, wireless 

communication systems such as wireless sensor network have the advantages 

of easier installation and lower capital cost. We propose the use of WSN for 

collecting and transmitting the condition monitoring data to enhance the 

reliability of wind parks. Using data driven approach the collective health of 

the WP can be represented based on the condition of the individual wind 

turbines, which can be used for predicting the remaining useful life of the 

system. 

Keywords: 

Health monitoring 

Machine learning 

Renewable power 

Wind park 

Wind power 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

George Fernandez. S  

Department of EEE 

SRMIST, Chennai 

Email: George.electrix@gmail.com 

 

 

1. INTRODUCTION  

The conventionally used maintenance scheduling involves time based scheduled maintenance which 

lack in providing proper information of health condition of equipment also maintenance is provided disregard 

of the its need. The work proposes a Predictive maintenance over scheduled/time based maintenance. As 

maintenance cost is a key portion of the total cost of electricity generated by WT work in this field is required 

to minimise it [1, 2]. Compared to a time-based maintenance schedule, condition-based maintenance provides 

better diagnostic information on the health condition of the different WT components and subsystems. Due to 

the exposure to harsh environment wind turbine (WT) have high failure rates [3-5]. Due to lack of data, exact 

location of the fault is not detected. Not much attention is given to fault prognosis in literature. Conventional 

method of condition monitoring (CM) make use of vibration analysis which is not enough to gather the 

adequate information required for providing accurate predictive maintenance, as the signal acquired from the 

vibration sensors are prone to the environmental noise. Adding to this current signal can be safely collected at 

remote condition [6, 7]. Combining current signature analysis (CSA) with vibration analysis will provide 

better information regarding the condition of WT subsystem on rotor asymmetry detection in WT suggested 

generator current signals to analyse asymmetries [8]. It makes use of EKF to figure out the fault signature 

component. The results shows that EKF when compared to continuous wavelet transform and iterative 

discrete Fourier transform promises low cost and efficiency for monitoring the output of WT. This also 

suggests how a CWT can’t produce fine resolution in time and frequency domain, adding to this large time is 

required to compute it [9-12]. The IDFT and EKF take similar computational time which makes them 

https://creativecommons.org/licenses/by-sa/4.0/
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suitable for online condition monitoring. In [13] the FP and RUL prediction of WT gearbox is proposed a 

Particle Filtering approach for prediction and the result also showed that ANFIS performed better than RNN 

for state transition of the fault feature. In this work ANFIS and RNN are used to train the generator for the 

state transition of fault feature. The particle filtering approach will then predict the RUL. The harmonic 

transient analysis of WT using extended harmonic domain model [14-16] suggested the use of DFIG as it 

allows only a portion of power to pass through the converter that leads to reduced size, cost and losses. The 

paper analyse harmonic frequency in the transient state. Any type of control scheme can be applied as it can 

be easily converted into time domain as it provides instantaneous time-variation of harmonics. A research 

[17] discuss about various advancement in predictive maintenance. They also discuss about the challenges 

and principles of using generator current signature analysis and collective condition monitoring for WT. they 

suggest extracting multiple fault features like SNR, kurtosis, RMS values and performing fault diagnosis with 

aid of machine learning methods. A data driven design for FD using RF and XGboost ensemble learning 

method is proposed in [18-20]. Combining these methods will increase the WT fault classifier efficiency. RF 

and XGboost have proven their efficiency and effectiveness in their classification and regression application. 

They use first-order filters to reduce the noise disturbances. A tree structure classifier is used so that the most 

dominant signals can be used as fault features. They use harmonic order tracking analysis method for 

improving the fault diagnosis reliability. Proposed methodology doesn’t require speed measurements and the 

results are plotted similar to a fourier spectrum. They also reduced the parameters required to analyse the 

machine condition.  

Multiclass SVM-based fault identification schemes using the time- and frequency-domain features 

are used and both stator and rotor current for a multisensory information fusion-bases FD and identification 

framework is used for WT health monitor [21]. Tasnim [22] proposed frequency analysis and a stacked auto 

encoder based multi class SVM deep classifier-based fault diagnosis using rotor current. Hilbert-transform 

was used for envelope extraction, and an angular resampling algorithm was developed to solve the spectrum 

smearing problem caused by shaft speed variations. Jiang, [23] in their work proposed denoising autoencoder 

with temporal information. Sliding-window technique is utilised so the Denoising Auto encoder captures 

nonlinear correlations among multiple variables and temporal dependencies at each variable. The research 

works [24-25] proposed multilevel dendritic cell algorithm-based FD and isolation technique. It also integrate 

time window for online FD strategy. It is also compared with negative selection algorithm based FD and 

identification techniques. The proposed method requires low computational complexity. Quantitatively better 

results are obtained by the proposed method. 

 

 

2. OBJECTIVE OF THE WORK 

The objective of the work can be broadly classified as the following points: 

a) The shift from scheduled maintenance to condition based maintenance 

b) Change in the electrical parameters is detected by current signature analysis which can be used to detect 

possible failures in the system to undergo diagnosis and prognosis. 

c) By application of data driven approaches for condition based monitoring we are looking forward for a 

result that maximises the energy conversion by minimizing the damage caused by faults at the earliest 

with maximum accuracy and make our wind energy conversion system highly reliable and secured. 
 

2.1.  Condition assessment using current signature and vibration analysis 
There are numerous studied of WECS fault detection and diagnosis in the literature that could be 

classified as model-based approaches and data driven approaches. Vibration signal based CM have been 

commercially utilized in most of the WECS available, however the Accuracy and effectiveness of this 

method are affected by the sensor location and easily contaminated by environmental noise. Current based 

monitoring technique with vibration analysis reduces the requirement of Sensors and can be an effective 

approach for CM of WT. the parameters used in CSA are rotor current and stator current. The Figure 1 shows 

the schematic of the prognosis CM system that consist of several functional modules including signal 

conditioning, fault feature extraction, fault diagnosis and prognosis, RUL prediction, alarm management and 

equipment management. 
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Figure 1. Schematic of a current based prognostic CM for WT 

 

 

2.2.  Current signature analysis 
Fault in WT drive train component induces vibrations of the shaft at certain frequencies called fault 

characteristic frequencies in vibration and are proportional to the rotating frequencies of the shaft. This is a 

result of mechanical couplings between generator and failed drive train component(s), electromagnetic 

coupling between generator rotor and stator, this modulates the frequency and amplitude of generator 

stator/rotor current signals. A generator current signal i(t) can be expressed as follows: 

 

 ( )  ∑   ( )   ,    ( )    ( )  ∑     ( )   *[      ( )      ( )+
 
   -   (1) 

 

where k is harmonic number,   ( ),  ( ), and   ( )represent amplitude, frequency, and initial phase of the 

kth harmonic component, respectively;     ( ),     ( )and     ( ) are the amplitude, frequency and initial 

phase of the jth fault characteristic frequency in vibration that modulates the frequency of the current signal, 

respectively. All the above values are time varying in nature. 

Due to affect of amplitude modulation, the current signal can be expressed as follows: 

 

  ( )      ( )∑     ( )
 
      [∫       ( )  ]  (2) 

 

Due to frequency modulation, each fault characteristic frequency in vibration     ( )in (1) become 

an infinite number of sidebands around the harmonic frequency   ( )in the current signal. It can be written as 

follows: 

 

 ( )  ∑   ( )   {  [   ∑ ∑      ( ) 
 
   ]    ( )}   (3) 

 

Here m is an integer indicating that the sidebands occur at multiples of faulty characteristic 

frequency in vibration     ( ) away from the harmonic frequency,   ( ). Above equations shows that the 

amplitude and frequency of the current signal both shows the information related to faults. Hence depending 

upon the location and amplitude of the fault characteristics frequency components extracted from the current 

signal, fault diagnosis can be performed. In practice only k=1 is considered for prognosis purpose. The 

current signal can also be assisted with vibration signals for CM of WT drive train under non-stationary 

operating conditions [9]. A most frequently used signal processing scheme is the FFT analysis of the current 

signal which gives the information of the fault characteristic frequencies. Variation of certain harmonic 

components in the frequency spectrum of the signal can be related to a specific fault and can be used as the 

fault signature for fault diagnosis of WT. Classical FFT is not capable of acquiring the information stored in 

a non-stationary signal of a WT. In such scenario the spectra of wavelet coefficient are analyzed in a specific 

frequency range that contains the features closely related to certain fault. Handling the computations with the 

FFT and power spectrum, it will be easy to understand the influence of windows on the spectrum. Several 

FFT-based functions that are extremely useful for network analysis can be done as shown in Figure 2. 
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Figure 2. FFT block to acquire frequency spectrum 

 

 

2.3.  Vibrational analysis 
As said earlier vibration signal based CM is one of the matured CM schemes implied dominantly by 

commercially available WT. This technique has been standardized by ISO10816. This standard gives the 

guidelines for the measurements and classification of mechanical vibrations of reciprocating compressor 

system. Vibration sensors types majorly includes accelerometers, velocity sensors, and displacement sensors, 

with accelerometer having the widest working frequency range from 1 to 30 kHz, whereas the velocity 

sensors has working range from 10 to 1 kHz. Displacement sensors have a working frequency range from 1 

to 100 Hz. Due to large frequency range offered by accelerometer sensors, they are most widely used in CM 

of WT components. Vibration signals amplitude can be used to indicate the severity of the fault. The 

vibration sensors should be mounted on the surface or embedded in the body of the wind turbine. The 

vibration signals analysis for fault diagnosis can be done in three domains namely, time-frequency domain, 

time domain, and frequency domain. The vibration analysis tends to have low NSR and hence this can be 

improved by Resonance demodulation technology, Cepstrum analysis, and time domain average method. 

Accelerometer is the most widely used vibration sensor because of the wide frequency range they offer. They 

are manufactured to monitor gearbox, tower sway, and seismic motion in WT. 

 

 

3. PROPOSED CONDITION MONITORING SYSTEM 

3.1.  CSA aided vibration analysis CM 
Till now we have just concentrated on a single WT but when we talk about wind parks or wind 

farms there is a group of WT in the same location. These Wind park have high installed capacity associated 

to them. When we talk about such a large number of WT and their condition monitoring wireless sensor 

network comes into picture. For wind park multiple WT CM schemes need to work together to give general 

idea about the health indication. In this phase we have concentrated on a single WT which can be expanded 

to a wind park. Data acquisition is a very crucial part of CM of WECS. For CSA data is acquired in the form 

of current signals from the generator in WT. This is done with the help of current transformer or other data 

acquisition techniques. For vibration analysis a range of vibration sensors are available dedicated for WT 

There is other vibration sensor available commercially for their application at different locations.  

Data pre-processing refers to the transfer of raw data to organised format to transform it in a useful format. 

This step includes data cleaning, data arrangement, data transformation, and data reduction.  

The first step is data cleaning, as the data available may have many missing part or irrelevant 

information. This step involves handling of such noisy and missing data. We can handle the missing value in 

two ways, one is by ignoring the tuples, the other by filling the missing values. To handle the noisy data due 

to false data collection we can use three ways namely, binning method, regression or clustering. The second 

step is data transformation which is taken in order to transform data in appropriate form suitable for mining 

process. This can be done by normalization, attribute selection, discretization or concept hierarchy 

generation. The final step is Data reduction that is used to handle huge amount of data. This aims to increase 

the storage efficiency and reduce data storage and analysis cost and time. This can be achieved by data cube 

aggregation, attribute subset selection, numerosity reduction or dimensionality reduction. Feature selection is 

a very crucial step in machine learning algorithm, the features used for the training the data has a huge 

influence on the performance of your model. In this step either manually or by some algorithm selection of 

the most useful feature is done that contributes most to the prediction required for the system. This has a 

great effect on the accuracy and reliability of your prediction system 
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3.2.  Simulation model development 
The parameter used for the generator model is given in Table 1 and the parameters of the gear box 

model is given in Table 2. A detailed model of the gearbox components is needed to acquire the dynamical 

behavior and to predict the loading conditions of the system as shown in Figure 3. To understand the 

development and exploitation of complex systems, approaches, tools that can provide simplified 

representations of reality is required. These simplified visions are called models which are based on graphical 

languages as shown in Figure 4. The wind turbine power curve is a graph that indicates how large the output 

will be for the turbine at different wind speeds is shown in Figure 5. 

 

 

Table 1. Generator model parameters 
Parameters Values 

Nominal power 1.65MVA 

Voltage 600 V 

Frequency 50 Hz 

Stator resistance 0.004843 Ohm 
Stator inductance 0.01248 H 

Rotor resistance 0.004377 ohm 

Rotor inductance 0.1791 H 
No of poles 6 

 

Table 2. Gearbox model parameters 
Parameters Values 

Inertia carrier shaft 10 

Inertia sun shaft 10 

Inertia first step shaft 10 

Gear ratio first step 4 
Gear ration Planetary 5 

 

 

 

 
 

Figure 3. Gearbox model 

 

 

 
 

Figure 4. Block diagram for WT model 
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Figure 5. WT power characteristics 

 

 

3.2.1. Case study and discussions 
The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion 

gear. Vibration signal of 6 seconds was acquired each day for 50 consecutive days during the period an inner 

race fault developed and caused the failure of the bearing. In Table 3, 9 data from the existing data set is 

shown for the reference. 

 

 

Table 3. Data collected from tachometer and data collected from vibration sensor 
No. Technical Data No. Vibration Data 

1 0.007383 1 0.178114 

2 0.007383 2 1.728471 

3 0.007383 3 1.039679 
4 0.007383 4 -0.54949 

5 0.007383 5 -0.87209 

6 0.007383 6 -1.804 
7 0.007383 7 -1.54984 

8 0.007383 8 0.255948 

9 0.007383 9 1.296981 

 

 

Extract the date information as independent variables so that we can make the data useful, and 

divide the data as per date and time. Now for Data Exploration and plotting, First visualize the vibration 

signals in the time domain. In this dataset, there are 50 vibration signals of 6 seconds measured in 50 

consecutive days, which gives the following plot as shown in Figure 6 with the 50 vibration signals. 

Vibration signal in time domain shows increasing trend of signal impulsiveness. Spectral Kurtosis is 

considered as a powerful indicator in frequency domain for WT prognosis; hence information about it can 

help with the CM. The window size is taken as 128. Color bar is used to indicate fault severity the range is 

from 0 to 1. The Figure 7 shows that the spectral kurtosis value around 10 kHz gradually increased as the 

machine condition degrades. 
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Figure 6. Vibration signals in the time domain 

 

 

 
 

Figure 7. Spectral kurtosis 

 

 

3.2.2. Feature extraction 
Based on the above section analysis, statistical features from the time domain signal and spectral 

kurtosis can be derived that can be used as our fault feature for training purpose. The mathematical features 

include mean, peak to peak, crest factor, impulse factor, margin factor, energy, skewness, RMS and similarly 

for spectral kurtosis. These features are extracted with the available MATLAB functions. A feature table with 

all the data organised is created so that all the feature with their associated values with their time and date is 

created. The Table 4 shows the feature table for 4 days and 5 features. 

 

 

Table 4. Feature table for 4 days and 5 
Date Mean Std Skewness Kurtosis Peak2Peak RMS 

'11-Mar-2013 03:00:24' 0.213902311 2.088998915 0.006579094 3.04052075 21.216959 2.099918039 

'16-Mar-2013 06:56:43' 0.232812554 1.975499553 -0.006068651 3.006899646 17.33607101 1.989167375 

'21-Mar-2013 00:33:14' 0.188993978 2.185210314 0.000366998 3.141638287 24.8842411 2.193364206 
'26-Mar-2013 01:41:50' 0.257405783 2.22928624 0.004230466 3.097450444 23.71159935 2.244094007 
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When the smoothing parameters are smaller, the result will have less smoothed feature and Hence, 

the choice of the parameters need to align with required applications as shown in Figure 8. The indicated 

severity of the fault is measured and normalized into 0 to 1 scale. Then the spectral kurtosis value is fixed 

around 10 kHz gradually increases in Figure 9. The peak2peak values are indicated before and after the 

smoothening in represented in Figure 10. 

 

 

  
 

Figure 8. Standard feature smoothing 

 

 

 
 

Figure 9. Kurtosis feature smoothing 

 
 

Figure 10. Peak2peak feature smoothing 

 

 

3.2.3. Fault prognosis 
Feature ranking is done using monotonicity, to select the best feature for training the data. 

 

Monotocity (xi) = 
 

 
∑

|                         (  
 
)                             

 
) 

   

 
    

 

Here, n is number of measurement points, in this case n is 50, m is the number of machine 

monitored, in this case its 1.   
 
 is the ith feature measured on jth machine. Kurtosis of the signal appears to 

be the top feature based on monotonicity. Figure 11 indicates that the first principal component is increasing 

as the machine approaches failure. Hence it is a promising health indicator. The health indicator is shown in 

Figure 12. 
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Figure 11. Plot for principal component 

 

 

 
 

Figure 12. Plot for health indicator 

 

 

4. CONCLUSION 
From the work we can say that the vibration analysis alone is not enough for the affective CM of 

wind turbine and hence needs and aiding scheme. Internal factors of a WECS play a major role in designing 

the CM system for a WT. CM scheme is going to be different for every component and subsystem. The 

location of the sensor and its condition also plays a important role in the CM of WECS. If the complexity of 

the model is increased a better diagnostics approach can be developed which can be implemented in the real 

world with ease. The diagnostics approach should be applied to large scale and small scale WT. The work is 

done for a single WT which should be extended to a number of WT to get a reliable scheme for the CM of a 

wind park. More case studies should be done to get a reliable scheme for CM that is effective for onshore and 

offshore application of Wind Park. 
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