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 Social Networks progress over time by the addition of new nodes and links, 
form associations with one community to the other community. Over a few 

decades, the fast expansion of Social Networks has attracted many 
researchers to pay more attention towards complex networks, the collection 
of social data, understand the social behaviors of complex networks and 
predict future conflicts. Thus, Link prediction is imperative to do research 
with social networks and network theory. The objective of this research is to 
find the hidden patterns and uncovered missing links over complex networks. 
Here, we developed a new similarity measure to predict missing links over 
social networks. The new method is computed on common neighbors with 
node-to-node distance to get better accuracy of missing link prediction.  

We tested the proposed measure on a variety of real-world linked datasets 
which are formed from various linked social networks. The proposed 
approach performance is compared with contemporary link prediction 
methods. Our measure makes very effective and intuitive in predicting 
disappeared links in linked social networks. 
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1. INTRODUCTION  

Rapid development of online social networks has grown exponentially by the emergent day-by-day 

scenario and plays a vital role in creating interest to extend friendships, share common interests and to 

perform various business [1]. In social networks, nodes represent domain-dependent entities and links 

represent the relation between entities [2]. The Link prediction problem estimate or find hidden patterns that 

exist between any two unconnected nodes by observed nodes and links [2]. In general, social networks 

require link prediction to calculate the uncovered or future links which are useful for people to add friends on 

networks. First, link prediction is applied to recommender systems and it can be used to understand the entire 

network built on detected networks. Finally, it can be applied on Bio-informatics, to discover the interaction 
between proteins [3]. Security field can make use of Social link prediction to recognize secret terrorist 

activities which in turn identifies the abnormalities of communication in networks [4]. The Social network 

model is important to understand organizational structures and link behaviors [5]. Link prediction and 

classification becomes the most challenging issues in social networks, and these are essential due to the vast 

capacity of data on social networks [6]. The main obstacle in link prediction is the trade-off among the total 

data which includes nodes, links and features [7]. Evaluating the possible links among nodes that are not 

observed until now by utilizing on hand link information and feasible node information in social networks is 

the main role of missing link prediction [8]. However, the prediction of social networks faces two 

challenging issues that are a) incomplete or missing links, b) dynamic networks. The intension of missing 
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link prediction is to find disappeared links among the nodes using existing links and connections in the social 

networks that are recently added or deleted [6, 8]. The appearance of a link among nodes with high scores is 

significant for the prediction of missing links. Link prediction is the most challenging problem in complex 

networks [7]. This challenging objective makes interpretations concerned with the surviving links among  

the nodes of the graph and understands the structure of the network to forecast the links between the entities 

[7]. In the literature, most of the researchers have investigated link prediction through unsupervised and 

supervised learning approaches using nodes or paths of social networks. However, the social link prediction 

prototypes depend on the theory that nodes with high similarity are expected to join networks [9, 10].  
The examination of complex network topology and structural features shows that the similarities are 

calculated based on the similarity metrics like Adamic Adar, common neighbors, Jaccard coefficient, 

preferential attachment [7]. Thus, these measures are likelihoods of link association in networks.  

Although the above measures may look outdated, they are far away from being obsolete [7] 

This paper address an extension of the work done by Jinxuan Yang and Xiao-Dong Zhang (2016) 

[11]. Common Neighbors (CN) [7, 12, 13] is a popular approach for link prediction but the weaknesses of 

CN is that it is not sufficient to disclose the similarities between the nodes of networks with a single common 

neighbor. The network with part of missing links will not perform well due to uncommon neighbors, 

moreover it plays a vital role to form dissimilar communities, it in turn, affects network properties like 

average distance, centrality, and congestion. So, it is significant to develop an algorithm to identify  

the missing links among nodes without common neighbors. To solve these issues, we developed a novel 

approach to predict the unobserved links in social networks established on common neighbors and  
node-to-node distance. In this paper, we developed a new two-stage similarity measure for missing link 

prediction of networks. Finally, the experimental outcome reveals the dominance of the suggested method 

over persisting methods. The time complexity of this method is almost similar to the CN method [7, 12, 13] 

and CN and distance method [11]. 

 

 

2. RELATED WORKS 

This section, address a brief review of the contemporary missing link prediction approaches. 

Recently, missing link prediction has received considerable attention on social networks. In 2004,  

Ben Taskar et al., [14] presented link prediction by using a probabilistic model in relational datasets using 

WebKB dataset. It is used to exploit interesting patterns in graph and Relational Markova networks. In 2006, 
Sevon et al., [15] presented a technique for link discovery from biological databases using three measures 

with probabilistic interpretation i.e., edge reliability, relevance, and rarity. In 2007, Liben Nowell, and Jon 

Kleinberg [16] presented a method to identify the closeness of nodes in social networks. Experiments are 

tested over complex networks of co-authorships which recommend that the information of the existing 

networks can be used for predicting the upcoming interactions.  

In 2008, Clauset et al., [17] presented a measure for predicting missing links in networks and 

hierarchical structure prediction of networks. In 2009, Zhou et al., [18] offered a novel similarity approach 

for identifying missing links through local information based on node similarity. This shows that many links 

in the network are assigned with the same scores when the nearest neighbors are used. Another new measure, 

influenced by the resource allocation process and it is similar to common neighbors with one step random 

walk. In 2010, Liu and Linyuan [19] proposed a method for predicting the missing links, built on the local 
random walk and superposed random walk index and compared with other six well-known methods by using 

five well-known network datasets. In 2011, Strom and Leskovec [20] described a supervised random walk 

algorithm for predicting missing links where strengths to the edges are assigned by a function such that  

the random walker probably looks up the nodes to whom new links are formed in the future. In 2012,  

Chen et al., [21] used vertex based similarity measures for predicting missing links. It is useful to predict  

the unseen arrangement of the vertices in the networks.  

In 2013, Narang et al., [22] discussed the link prediction task using proximity measures with 

different network flows which include a random walk, epidemics and applied these heuristics for identifying 

missing links in social and biological networks. In 2014, Naveen and Anurag Singh [23] proposed a new 

measure for predicting missing links by using common neighbors and uncommon neighbors which predicts 

the possibility of a link among two nodes by utilizing local topological information. In 2014, Tan et al., [24] 

developed a novel method for predictiong missing links in networks by applying mutual information of 
network topology which is a less time-consuming approach. In 2015, Liao et al., [25] described a new 

approach for predicting missing links in networks using the Pearson corelation coefficient. It is very 

proficient for extracting the similarity information in the network.  

In 2016, Yang et al., [11] presented an approach for missing link prediction in complex networks 

using common neighbors and distance. It is accountable for missing links between nodes of the network 
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without common neighbors. We motivated for this work as an extension to this work of missing link 

prediction. In 2016, Pan et al., [26] presented an algorithm for predicting missing links to identify 

unauthentic links in complex networks using likelihood analysis. The limitation of this method is it can be 

applied only on small networks and time-consuming process. In 2017, Anupam and Bhaskar Biswas [27] 

have presented a prediction based on the community (CLP) for finding missing links, CLP system with 

centrality between edges, edge centrality with k-path and centrality with the spanning edge. In 2018, Yasami 

and Safaei [28] presented a novel approach for link prediction and forecasting of upcoming links in dynamic 

networks using multilayer model. The implication of this approach is obtained by sampling strategies  

of Markov Chain Monte Carlo in complex networks. In 2019, Rödderet al., [29] presented a link prediction 

rested on cross entropy in social networks. This entropy method employed unbiased estimates for weights  
of missing links. However, the above link prediction methods don‟t yield effectiveness in common neighbors 

and accuracy of missing link prediction in social networks. 

 

 

3. PROPOSED MEASURE 

Motivated by the missing link prediction issues and challenges, we address an extension of the work 

done by Jinxuan Yang and Xiao-Dong Zhang (2016) [11].  

Problem Definition: Suppose G (V, E) be a graph of social network at time t, where V represents 

nodes or vertices with size  , E represents edges or links with the size   respectively. Also, this graph is 

undirected, unweighted, doesn't allow self-loops and several links. The aim of this measure is the prediction 

of new links or missing links between nodes of the network.  

Definitions: Let    be proportion links in graph G, then divide    into two subsets that are links 

among nodes with common neighbors (  
 ) and without common neighbors (  

  ).  

 

  
  *    | ( )   ( )           (   )    + (1) 

 

  
   *    | ( )   ( )           (   )    + (2) 

 

In (1) & (2)  ( ) represents the set of neighbors of node    , and  ( )denotes the set of neighbors of node „ ‟.  
 

  
    

              (3) 

 
|  
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where L represents the number of missing links. 
New Similarity Measure: In literature, complex networks use common neighbor as a popular 

method for link prediction. A single common neighbor measure does not reveal the similarities in network 

links accurately. So, it is essential to propose a new measure for identifying missing links among nodes 

without common neighbors. Keeping these limitations, we suggested a new similarity method for predicting 

missing links in complex networks. This method computes links if they have more common neighbors with 

node-to-node distance. Here, node-to-node distance plays a vital task in missing link prediction among nodes 

without common neighbors. The proposed similarity measure summarized as follows: 

 

      {

        

     
  ( )   ( )    

 

   
                           

 (5) 

 

where,      | ( )    ( )| represents the set of neighbours of node          .     is the distance among nodes. 

Using (5) we attain the similarity scores of all the un existing links     , then sort the similarity 

scores in decreasing form. Now pick top- |  
 | links among nodes with common neighbors and select  

the top-|  
  | links among nodes without common neighbors and from      to compose identified links. 

In this section, we presented the proposed measure of research and at the same time it gives the thorough 
examination. Outcomes can be shown in figures, graphs, tables and others that make the reader to interpret 

effortlessly [2, 5]. 
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4. EXPERIMENTS AND RESULTS 

This study uses eight complex social network datasets for testing our algorithm that is (i) Dolphins, 

(ii) E-mail, (iii) Karate, (iv) Polbook, (v) Power, (vi) Word, (vii) Facebook, (viii) Wiki. The datasets and their 

properties are presented in Table 1.  

 

 

Table 1. Description of the datasets and their properties 
Dataset n M c cn <d> <k> 

Dolphins 62 159 0.26 0.76 3.35 5.12 

Email 1133 5451 0.22 0.77 3.06 9.62 

Karate 34 78 0.57 0.85 2.40 4.58 

Polbook 105 441 0.48 0.95 3.07 8.40 

Power 4941 6594 0.08 0.20 18.98 2.66 

Word 112 425 0.17 0.72 2.53 7.58 

Facebook 4039 88234 0.6055 0.687 8 43.69 

Wiki 7115 103689 0.1409 0.734 7 14.57 

 

 

where  =nodes,  =links,  = cluster coefficient,   =common neighbor coefficient,    = average distance, 

   =average degree. 

Dolphins [30]: Data About bottlenose dolphins relationship directed social network. The nodes 

represent the bottlenose dolphins of the dolphin community living off Doubtful Sound, a fjord in New 

Zealand during the period 1994-2001.  

Email [31]: This dataset contains networks of e-mail transactions between the members of 

University at Rovira i Virgili (Tarragona) 

Karate [32]: This dataset consists of social ties among the associates of the university of Karate club 

networks composed by W.Zachary 1977.  

Polbook [33]: This dataset is a network related to books of US politics printed around 2004 

governmental election and available at Amazon.com.  

Power [34]: This dataset contains an un weighted network presenting topological information about 
Power Grid of Western States in the United States. 

Word [35]: This dataset was constructed by Newman contains a linkage of noun adjacencies and 

common adjectives of the book “David Copperfield” by Charles Dickens 

Facebook [36]: This dataset comprises of friends list from Facebook, includes node features 

(profiles), circles, and ego networks. Data is collected from a survey through an app.  

Wiki [37]: This dataset comprises all the Wikipedia voting related information acquired from  

the origination of Wikipedia till January 2008. 

The computation of link prediction methods: This study compares the proposed method with 

Adamic-Adar (AA), Common Neighbor (CN), Hub Depressed Index (HDI), Hub Promoted Index (HPI), 

Jaccard Coefficient, Leicht-Holme-Newman Index (LHN), Salton Index (Sal), Sφrensen Index (Sen),  

and CN+Dist [11] on complex social networks given in Table 1.  
Testing metrics: In this experiment, two statistical indices are identified to check the effectiveness 

of the proposed link-prediction method. The initial index measure is the area under the ROC curve (AUC): 

 

    
   

 

 
    

 
  (6) 

 

where    is the number of periods a disappeared link is allotted a higher probability,     is the number of 

periods they have allotted identical probability, and n denotes the total number of assessments that are  

the number of disappeared links and the number of unexisting links. This AUC measure quantifies  

the possibility of assigning a higher score to a missing link than any non-observed link. Another index 

measure is Precision also known as true positive rate, which is defined as follows:  

 

          
  

     
   (7) 

 

This quantifies the percentage of missing links that are properly retrieved. In Table 2, predicted 

results of various common neighbor index methods under the AUC results on the complex social network 
datasets are presented. The outcomes are the mean of 40 recognitions for every complex network, and every 

time the probe set    will be removed randomly. The uppermost values for individual networks are 

highlighted. 

https://www.facebook.com/apps/application.php?id=201704403232744
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Tables 2 and 3, list the predicted results of the various index measures under the AUC metric.  

The outcomes are the mean of 40 recognitions for every network under 10% and 20% investigation set.  

Thus, the proposed measure performs better with other measures due to their node-to-node distance 

computation. Because of less training dataset, the pair of nodes through a common neighbor becoming a 

minor that raises the complexity of missing link prediction. Similarly, the missing link prediction results of 

Precision are presented in Table 4 and 5. It quantifies that the percentage of missing links are properly 

recovered in the linked social networks. The experimental results of state-of-the-art algorithms are well 

performed for a great ration of   than the lower Precision measure.  

 
 

Table 2. The results of the AUC of various measures under 10% probe in social networks 
 Dolphins Email Karate Polbook Power Word Facebook Wiki 

AA 0.776 0.849 0.720 0.899 0.585 0.677 0.867 0.846 

CN 0.772 0.847 0.678 0.890 0.586 0.678 0.912 0.928 

HDI 0.773 0.845 0.582 0.865 0.586 0.621 0.884 0.893 

HPI 0.754 0.841 0.696 0.897 0.586 0.635 0.912 0.913 

Jaccard 0.770 0.845 0.592 0.879 0.586 0.627 0.901 0.902 

LHN 0.752 0.838 0.579 0.852 0.586 0.585 0.856 0.834 

Sal 0.617 0.844 0.618 0.885 0.586 0.624 0.874 0.901 

Sen 0.592 0.845 0.589 0.879 0.586 0.623 0.873 0.891 

CN+Dist 0.791 0.880 0.724 0.904 0.659 0.694 0.942 0.946 

Proposed 0.779 0.972 0.772 0.921 0.668 0.656 0.989 0.949 

 

 

Table 3. The results of the AUC of various measures under 20% probe in social networks 
 Dolphins Email Karate Polbook Power Word Facebook Wiki 

AA 0.754 0.822 0.684 0.882 0.571 0.661 0.856 0.862 

CN 0.741 0.822 0.662 0.858 0.571 0.858 0.938 0.904 

HDI 0.751 0.820 0.591 0.847 0.571 0.609 0.823 0.884 

HPI 0.739 0.816 0.662 0.868 0.571 0.623 0.927 0.902 

Jaccard 0.749 0.819 0.598 0.856 0.571 0.609 0.867 0.888 

LHN 0.736 0.814 0.588 0.829 0.571 0.583 0.899 0.910 

Sal 0.746 0.818 0.614 0.862 0.571 0.611 0.901 0.893 

Sen 0.750 0.819 0.597 0.856 0.571 0.609 0.893 0.913 

CN+Dist 0.767 0.871 0.678 0.885 0.593 0.672 0.924 0.912 

Proposed 0.795 0.973 0.715 0.881 0.655 0.680 0.988 0.946 

 

 

Table 4. The results of precision of various measures under 10% probe 
 Dolphins Email Karate Polbook Power Word Facebook Wiki 

AA 0.128 0.158 0.132 0.172 0.031 0.068 0.207 0.078 

CN 0.135 0.149 0.143 0.148 0.069 0.063 0.301 0.112 

HDI 0.083 0.075 0.000 0.105 0.020 0.002 0.211 0.091 

HPI 0.022 0.013 0.171 0.142 0.030 0.011 0.266 0.11 

Jaccard 0.087 0.074 0.004 0.122 0.016 0.002 0.193 0.088 

LHN 0.017 0.004 0.007 0.077 0.009 0.001 0.192 0.032 

Sal 0.075 0.056 0.000 0.120 0.015 0.000 0.278 0.118 

Sen 0.087 0.074 0.004 0.122 0.016 0.002 0.192 0.121 

CN+Dist 0.227 0.225 0.221 0.188 0.079 0.193 0.324 0.125 

Proposed 0.348 0.320 0.231 0.266 0.081 0.093 0.314 0.131 

 

 

Table 5. The results of precision of various measures under 20% probe 
 Dolphins Email Karate Polbook Power Word Facebook Wiki 

AA 0.161 0.188 0.155 0.278 0.023 0.102 0.194 0.194 

CN 0.226 0.163 0.200 0.243 0.085 0.107 0.356 0.149 

HDI 0.159 0.113 0.045 0.138 0.018 0.017 0.214 0.112 

HPI 0.018 0.012 0.145 0.192 0.027 0.009 0.245 0.146 

Jaccard 0.131 0.097 0.028 0.157 0.013 0.014 0.190 0.099 

LHN 0.027 0.012 0.015 0.089 0.010 0.001 0.239 0.077 

Sal 0.108 0.071 0.023 0.158 0.013 0.009 0.302 0.123 

Sen 0.131 0.097 0.028 0.157 0.013 0.014 0.189 0.133 

CN+Dist 0.256 0.255 0.292 0.252 0.060 0.231 0.389 0.169 

Proposed 0.306 0.390 0.259 0.289 0.122 0.133 0.394 0.175 
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5. CONCLUSION  

This research presents a novel similarity measure for predicting missing links. The account of 

missing links among two nodes is due to uncommon neighbors in social networks. The suggested approach is 

relay on the common neighbors and the node-to-node distance which improves prediction accuracy. Existing 

measures constructed on common neighbors are unable to identify missing links among nodes, computing the 

percentage of missing links among nodes without common neighbors in total missing links of the networks. 

The proposed method makes an efficient way for missing link prediction among nodes without common 

neighbors. From the investigational results, we conclude that the prediction precision of the suggested 
approach is higher to other methods used on social networks. 
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