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ABSTRACT

The darknet monitoring system consists of network sensors widely deployed on the
Internet to capture incoming unsolicited packets. A goal of this system is to analyse
captured malicious packets and provide effective information to protect regular non-
malicious Internet users from malicious activities. To provide effective and reliable
information, the location of sensors must be concealed. However, attackers launch
localisation attacks to detect sensors in order to evade them. If the actual location
of sensors is revealed, it is almost impossible to identify the latest tactics used by
attackers. Thus, in a previous study, we proposed a packet sampling method, which
samples incoming packets based on an attribute of the packet sender, to increase
tolerance to a localisation attack and maintain the quality of information publicised
by the system. We were successful in countering localisation attacks, which generate
spikes on the publicised graph to detect a sensor. However, in some cases, with the
previously proposed sampling method, spikes were clearly evident on the graph.
Therefore, in this paper, we propose advanced sampling methods such that incoming
packets are sampled based on multiple attributes of the packet sender. We present our
improved methods and show promising evaluation results obtained via a simulation.
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1. INTRODUCTION
The Internet has become an indispensable resource for most people. However, a various malware is

deployed to cause cyber attacks that seriously threaten the safe and reliable use of the Internet, for example
stealing confidential personal data or launching Denial-of-Service (DoS) attacks on specific corporate enter-
prises to hinder their ability to provide services [1]. A Symantec [2] shows that 4,818 unique websites were
compromised every month in 2018. With data from a single credit card being sold for up to $45 on underground
markets, just 10 credit cards stolen from compromised websites could result in a yield of up to $2.2 million for
cyber criminals each month. Cyberattacks primarily exploit software vulnerabilities [3, 4]. Thus, it is essential
to find and manage such vulnerabilities at an early stage to prevent various types of damage, e.g., revealing
confidential information or financial harm to both corporate enterprises and general users.

Darknet monitoring systems are developed to find software vulnerabilities and identify the latest meth-
ods used by attackers. An overview of a darknet monitoring system is shown in Figure 1. A darknet monitoring
system comprises multiple network devices, i.e., sensors, that are deployed in unused IP address space on the
Internet. Note that these sensors are configured to capture only incoming packets; they do not provide any out-
going services. Such sensors may receive unsolicited packets when they are directly connected to the Internet.
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Sensors distributed in darknet space capture incoming unsolicited packets. Typically, packets do not arrive in
unused address space, i.e., darknet. Thus, we can infer that packets arriving in these unused address spaces,
which are valid and routable, are likely malicious. Organisations that operate darknet monitoring systems col-
lect and analyse these malicious packets. Usually, the analysis results, which can provide effective information
to protect regular, non-malicious Internet users from malicious activities, are made publicly available.

Users

Data CenterSensorsMalicious
Packets

Monitored
Results

Figure 1. Overview of darknet monitoring system

To provide effective and reliable information, the location of darknet sensors must be concealed be-
cause attackers launch localisation attacks to detect the sensors’ IP addresses in order to evade them. If the
IP addresses are revealed to attackers, it is almost impossible to identify and analyse new malicious attack
methods [5]. In addition, the sensors themselves may be targeted by DoS attacks. When attackers initiate
a localisation attack, they masquerade as general Internet users. To detect sensors, they misuse information
provided by organisations operating a darknet monitoring system. Thus, if organisations release time-series
graphical information without taking countermeasures to protect the information, attackers can use the publi-
cised graph to detect a sensor. In a previous study, we proposed a packet sampling method, which samples
captured packets based on an attribute of the packet sender, to increase localisation attack tolerance and to en-
sure the quality of information provided by a darknet monitoring system in our work [6, 7]. We were relatively
successful in countering localisation attacks, which generate spikes on the publicised graph to detect a sensor.
However, in some cases, unexpected spikes that could indicate the location of a sensor appeared in the graph.

Therefore, here, we propose advanced sampling methods whereby incoming packets are sampled
based on multiple attributes of the packet sender. Note that the proposed method exploits knowledge gained
from our previous work. A performance evaluation was conducted by simulating attackers’ tactics and applying
the proposed methods. We used actual captured packets provided by the Nicter [8, 9] darknet project operated
by the Japanese National Institute of Information and Communications Technology (NICT). In addition, we
also discuss the degradation of publicised information by sampling captured packets compared to a no sampling
case. In this paper, we present our improved methods and show a promising evaluation result. This paper is a
revised and expanded version of a paper entitled “A Study of Packet Sampling Methods for Protecting Sensors
Deployed on Darknet” presented at 19th International Conference on Network-Based Information Systems
(NBiS 2016) [7].

2. RELATED WORK
A wide variety of darknet monitoring systems are operated all over the world to identify and under-

stand the latest attack trends on the Internet [10, 11]. The NICT NICTER project has many user interfaces. For
example, Cube draws a cubical object in the centre of a window and maps captured packets on the object based
on the source and destination of arrived packets. Atlas maps captured packets on a world map and indicates in
real time the countries that sends malicious packets to Japan. In addition, NICTER counts captured packets by
country of origin and classifies packets as TCP or UDP. This is available on the NICTERWeb [12]. As another
example, the Japanese National Police Agency operates @police [13], a darknet monitoring system that col-
lects firewall and intrusion detection system log data at the network entry gateway of institutions affiliated with
the police. @police provides security-related information in the form of time-series graphs and tables on their
web site. DShield [14], a community-based firewall log correlation system, recruits volunteers from across
the world. The volunteers provide firewall logs that are used to analyse attack trends. DShield is the world’s
largest darknet community. The Cooperative Association for Internet Data Analysis, CAIDA [15, 16], man-
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ages the University of California, San Diego’s Network Telescope’s Internet traffic monitoring system. This
system dominates an entire globally routed /8 network that comprises approximately 1/256 of all IPv4 Internet
addresses. The system captures all incoming packets to that address space.

However, attackers launch localisation attacks against darknet monitoring systems to detect and bypass
sensors. Shinoda et al. [17] and Bethencourt et al. [18] reported that, to detect sensors, an attacker can send
a large number of probing packets to suspicious network that includes a sensor preliminary in the short term
to detect sensors. Subsequently, attackers affirm the presence of sensors if sharp spikes appear on the time-
series graph publicised by the targeted system. Yu et al. [19–21] and our work [22] introduced a localisation
attack inspired by spread spectrum technology. This method increases attack stealth and can detect sensors
with low probing packets by sending probing packets synchronised with the value of a PN code sequence. If
the IP addresses of deployed sensors are revealed by a localisation attack, attackers can bypass the sensors
intentionally and launch malicious attacks on the Internet. Consequently, identifying the latest attack trends
becomes difficult. In addition, the sensors themselves may be exposed to obstinate DoS attacks. Basically,
attackers infer sensor IP addresses by investigating the publicly available data provided by agencies that operate
darknet monitoring systems. In short, attackers put a mark on upcoming publicised data and verify the presence
of the mark to detect a sensor. If countermeasures are not implemented, attackers could exploit publicised data
and easily detect sensors. Thus, establishing countermeasures against localisation attacks is imperative.

Viecco indicated and emphasised the usefulness of packet sampling techniques for captured packets
as a countermeasure to localisation attacks [23] . However, they only consider a theoretical framework. They
do not propose a functional sampling method and have not conducted a numerical validation. Thus, we propose
a packet sampling method wherein capturing packets are sampled based on an attribute of the packet sender.
Sampling is essentially a process that selects a representative subset of individuals from an entire population.
We ensure that packet sampling alleviates the influence of probing packets sent by attackers in open publicised
data and obtain tolerance to a localisation attack.

3. LOCALISATION ATTACK BY GENERATING SPIKES
In this section, we describe the localisation attack concept, which generates spike on the publicised

graph. This is based on the work by Shinoda et al. [17] and Bethencourt et al. [18]. Shinoda et al. [17] referred
to a direct and intentional detecting sensor activity as marking. They also defined spikes used for marking as a
marker. In this paper, we use these terms in the same manner. An overview of the localisation attack is shown
in Figure 2, and we explain the procedures in the following.

3) Identify Marker
4) Update Address List

Data Center

Attacker
Address List

Sensors

2) Send Marker

1) Preliminary Survey

Publicized Monitored 
Result

Figure 2. Overview of localisation attack

(a) Attackers preliminarily narrow down lists of suspicious target networks that include a sensor by analysing
materials on the web and obtaining handouts distributed in workshops by an operating organisation of
the target darknet monitoring system. The investigated results are preserved by attackers and become
lists of suspicious IP addresses acting as sensors on the Internet. Then, the attackers select a range of IP
addresses from the lists and initiate a localisation attack by sending markers.

(b) Attackers send markers over a short period to suspicious networks that include sensors, i.e., marking.
If the sensor receives packets in a short period, a discriminating spike appears in the time-series graph
publicised by the target darknet monitoring system.
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(c) Attackers masquerading as general and good Internet users access a website operated by the organisation
running the target darknet monitoring system. They verify the presence of a sensor in a target network
by identifying the marker trace in the system’s publicised time-series graph.

(d) Following the result of procedure 3), the attackers update the lists of suspicious IP addresses. They
precisely identify a sensor’s IP address by repeating procedures (b) through (d).

The above procedures summarise localisation attacks, which produce spikes on a publicised graph.
Since markers are sent as standard packets generated by a port scan, it is difficult to distinguish between markers
and other packets. As a result, a darknet monitoring system unintentionally provides instructive feedback to
attackers by publicising monitored results based on an all captured packets (including markers).

4. PROPOSED PACKET SAMPLING METHODS
We have previously proposed a packet sampling method that samples incoming packets based on an

attribute of the packet sender to increase tolerance to localisation attacks in our work [6]. Here, we propose
two advanced sampling methods that sample incoming packets based on multiple attributes of packets sender
based on our previous work.

4.1. Method 1: Sampling captured packets by focusing on arrival time and source IP address
Initially, we determine the timing of packet capture using random numbers. This is similar to our

previous work, which uses packet arrival time. Consequently, using random numbers makes it difficult for
attackers to infer when sensors capture packets. In addition, we keep captured packets in chronological order.
This contributes to tolerating localisation attacks. However, successfully preventing a localisation attack is a
matter of probability. In the worst case, each sensor may capture all packets sent by attackers based on the
time selected by random numbers. Thus, as a second step, we also sample captured packets based on source
IP address.

Generally, global IP addresses are administrated by a registration system. Users of a global IP address
must register a certain amount of identity information to WHOIS [24]. WHOIS information identifies which
IP addresses are assigned to which country; thus, it is easy to access information about where captured packets
originated. As shown in Figure 3 provided by Japanese National Police Agency [25], the ratio of source country
of captured packets is greatly biased toward several countries. We assume that attackers manipulate multiple
hosts in a botnet to send markers when they attempt a localisation attack. If the botnet comprises exploited
hosts whose source IP addresses are biased toward several countries, sampling captured packets uniformly in
terms of source countries reduces a spike produced by attackers on a publicised graph even with the containing
markers in the time selected by random numbers.

CN
US
TW

RU
DE
JP
HK
TR

KR
NL

Others

Figure 3. Ratio of source country of captured packets

The procedure for sampling method 1 is described as follows. We use GeoIP [26] to map the source
IP address of captured packets to a country.
Procedure 1: Determine Capture Time:

(a) Configure parameters m and n as 0 ≤ m < n ≤ 60. Hereafter, (m,n) denotes the range of random
numbers.

(b) Divide captured packets into separate data per hour. The data are denoted ..., Di−1, Di, Di+1, .... Gen-
erate l random numbers for each Di. Note that l ∈ [m,n].
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(c) Generate distinct l random numbers rj under following conditions: 1 ≤ j ≤ l and 0 ≤ rj < 60.
(d) Sample packets arrived at k minutes at each Di, k ∈ {r1, r2, ..., rl}.

Procedure 2: Sample Packets whose Countries are Distributed Equally:
(a) Identify originating country by referencing the source IP address of a captured packet.
(b) Sample or discard packets based on the result of (a).

a. Sample a packet if it has not been captured from the identified country.
b. If a packet has been captured from the identified country, sample it as long as packets sent from the

country are below predefined threshold θ1; otherwise, discard the packet.
(c) Reset the list of the sampled country per hour.

4.2. Method 2: Sampling captured packets according to arrival time and time-to-live
In method 2, we initially determine packet capture timing using random numbers (similar to

method 1). We then sample captured packets based on Time-to-Live (TTL). TTL is a configured value in
an IP header to prevent an endless loop of packets caused by misconfiguration in the network. The TTL value
is reduced sequentially when a packet moves through a router. The corresponding packet is discarded when the
TTL value is reduced to zero. Generally, the initial TTL value is defined by an operating system as shown in
Table 1.

Table 1. Initial TTL value of major operating systems
Operating System Initial TTL Value

UNIX 255
Windows 128

Linux 64

Thus, TTL can be used to infer the number of routers passing packets along a communication path,
and we can use it as an index of distance in a network. Similar to method 1, if the source distance of captured
packets is greatly biased, we believe sampling captured packets uniformly in terms of the number of network
hops reduces a spike produced by attackers on a publicised graph. The procedure of sampling method 2 is
described as follows.
Procedure 1: Determine Capture Time:

(a) Configure parameters m and n as 0 ≤ m < n ≤ 60 ((m,n) denotes the range of random numbers).
(b) Divide captured packets into separate data per hour. The data is denoted ..., Di−1, Di, Di+1, .... Generate

l random numbers at each Di. Note that l ∈ [m,n].
(c) Generate unique l random numbers rj under following conditions, 1 ≤ j ≤ l and 0 ≤ rj < 60.
(d) Sample packets arrived at k minutes at each Di, k ∈ {r1, r2, ..., rl}.

Procedure 2: Sample Packets Uniformly in Terms of the Number of Network Hops:
(a) Infer the number of network hops according to the TTL value. If the captured TTL value is t1, we obtain

t2 because t2 is greater than the value of t1 and less than the minimum value listed in Table 1. We define
the network hops as t2 − t1.

(b) Sample or discard packets based on the result of 1).
a. If the number of network hops has not been captured, sample it.
b. If the number of network hops has been captured, sample it as long as the number of network hops

is less than predefined threshold θ2; otherwise, discard it.
(c) Reset the list of the number of network hops per hour.

5. PERFORMANCE EVALUATION
5.1. Evaluation of tolerance to localisation attack
1) Assumption: We simulated a localisation attack (Section 3.) and evaluated the effectiveness of the proposed
methods to counteract the attack. Simulations were performed using a dataset [27] that includes packets cap-
tured in November of 2015. The dataset was provided by NICTER (a darknet monitoring system operated in
Japan). Assumptions about the target darknet monitoring system and localisation attack are described in the
following.
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(a) Assumption about target darknet monitoring system:
In this simulation, the target darknet monitoring system captures packets at each port. Then, the system
publicises and updates the monitored results at the same time interval. As shown in Figure 4, the transi-
tion of the number of packets captured by the system is plotted in a time-series graph per hour within the
compass of one week. Here, the Y-axis is the number of packets, and the X-axis is elapsed time. Note
that any general Internet user can access the publicised result; thus, malicious users can access the same
information.

Figure 4. Graph publicised by target darknet monitoring system

(b) Assumption about localisation attack:
We assume that an attacker sends markers to the tcp port 445 as the destination. In this simulation, the
number of packets arriving at tcp port 445 draws a relatively smooth graph compared to that of other ports
as shown in Figure 4; thus, we consider that attackers are easy to identify their spikes on the publicised
graph. In other words, we believe that this port is suitable for a localisation attack. We also assume
two groups of botnets, i.e., botnets A and B. These botnets are described in Tables 2 to 5. Botnet A
comprises exploited hosts whose source IP addresses and network hops are greatly biased, and botnet B
is the group that is the same assumption in our previous work for the comparison. The number of sent
packets, markers, duration of packet sending and time interval are shown in Table 6.

Table 2. Breakdown of botnet A in terms of
source countries

Country (Code) The Number of Hosts
CN 2
US 1
RU 1

Table 3. Breakdown of botnet A in terms of
network hops

The Number of Network Hops The Number of Hosts
18 2
15 1
12 1

Table 4. Breakdown of botnet B in terms of source countries
Country (Code) The Number of Hosts

CN 7
US 3
TW 2
NL 2
IN 1
KR 1
TR 1
RU 1
FR 1
MX 1
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Table 5. Breakdown of botnet B in terms of network hops
The Number of Network Hops The Number of Hosts

18 4
19 4
15 2
17 2
20 1
21 1
16 1
14 1
22 1
12 1
28 1
27 1

Table 6. Marking parameters
Destination Port 445/tcp
The Number of Sending Packets 3,000
The Number of Markers 4
Time Interval among Markings 20 hours
Duration of Marking within 1 minute

2) How to Determine Markers by Attackers: After attackers attempt marking, they masquerade as good Internet
users and access a darknet monitoring system to identify their markers on a publicised graph to determine the
presence of a sensor. Here, the attackers must determine whether identified markers, i.e., spikes, on the graph
were generated by themselves. Note that we assume the attackers determine their marker using an outlier
detection method. If the spikes are identified as a statistical outlier, the attackers can identify the spikes as their
own markers. In our evaluation, we adopted the most general statistical method, i.e., the 2σ outlier test. Figure 5
shows a simulated graph where attackers insert four markers. If organisations operating a darknet monitoring
system provide the graph as is without implementing countermeasures, attackers can acquire advantageous
feedback, and a sensor’s IP address can be discovered easily.

Figure 5. Markers generated by attackers

5.2. Information quality evaluation
Sampling is essentially a process that decimates a part from entire and complete information. Thus, it

is necessary to consider degradation of information quality caused by a darknet monitoring system when using
a sampling method. Therefore, we evaluated the proposed methods in terms of information quality in sampling
and no sampling cases. We compared quality obtained before and after sampling in well-known publicised
formats (time-series graph and table).
1) Rate of Concordance of Most Accessed Port: Darknet monitoring systems generally publicise the most
accessed top 10 port numbers on their websites in table form. The most accessed top 10 port numbers are
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destination ports that attackers intend to exploit. Here, we assumed two sets including the top 10 port numbers:
set X represents results obtained without sampling, and set Y represents results with sampling. We then
evaluated the rate of concordance of these two sets. To evaluate the concordance rate of the two sets, we
computed Simpson’s coefficient as follows:

Sim =
|X ∩ Y |

min(|X|, |Y |)
.

2) Similarity of Time-series Graph: Darknet monitoring systems publicise the amount of arriving packets at
each port as a time-series graph on their website. We compared a time-series graphs obtained without sampling
{Xu} and with sampling {Yu}. We adopted the Bhattacharyya coefficient L as an index to compute the
similarity of these two graphs.

L =

m∑
u=1

√
XuYu,

m∑
u=1

Xu =

m∑
u=1

Yu = 1,

(0 ≤ L ≤ 1).

The Bhattacharyya coefficient is essentially an index used to compute the similarity of histograms.
We define the value of 1 − L as the discrepancy of graphs, where two graphs are increasingly similar as the
value approaches zero.

6. RESULTS AND DISCUSSION
The evaluation results are shown in Tables 7 to 11. The number of markers in each table represents

the number of spikes that attackers successfully identified in the publicised graphs. Table 7 shows the results
obtained by our previous method. The other tables shows the results obtained by the proposed methods. Com-
pared to the previous method, the proposed sampling methods increased the tolerance to localisation attacks if
we focus the number of appearing markers. However, relative to graph discrepancy and concordance rate of the
accessed port, procedure 2, i.e., sampling source countries or network hops uniformly, reduced the informa-
tion quality. Relative to the concordance rate of the accessed port, method 2 obtained better results compared
to method 1. We conclude that the proposed methods can achieve higher tolerance to localisation attacks by
reducing the sampling packets as a range of random number defined in procedure 1 and threshold defined in
procedure 2 become small. However, degradation of information quality occurred.

Table 7. Sampling results of previous work
(m,n) Number of Discrepancy, Sim

Markers 1− L

(10, 20) 1.02 0.0694 0.833
(25, 35) 2.08 0.0352 0.910
(40, 50) 3.05 0.0140 0.949

Table 8. Sampling results of method 1 based on arrival time
and source countries against botnet A

(m,n) θ1 Number of Discrepancy, Sim
Markers 1− L

(10, 20) 10% 0.18 0.0621 0.742
(10, 20) 15% 0.62 0.0556 0.753
(25, 35) 10% 0.10 0.0509 0.744
(25, 35) 15% 0.76 0.0417 0.771
(40, 50) 10% 0.20 0.0466 0.743
(40, 50) 15% 1.82 0.0312 0.803
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Table 9. Sampling results of method 1 based on arrival time
and source countries against botnet B

(m,n) θ1 Number of Discrepancy, Sim
Markers 1− L

(10, 20) 10% 1.00 0.0621 0.743
(10, 20) 15% 1.00 0.0617 0.750
(25, 35) 10% 1.92 0.0419 0.743
(25, 35) 15% 2.24 0.0372 0.773
(40, 50) 10% 3.06 0.0320 0.743
(40, 50) 15% 3.08 0.0226 0.796

Table 10. Sampling results of method 2 based on arrival time
and TTL against botnet A

(m,n) θ2 Number of Discrepancy, Sim

Markers 1− L

(10, 20) 10% 0.34 0.0601 0.786
(10, 20) 15% 0.60 0.0556 0.822
(25, 35) 10% 0.32 0.0482 0.839
(25, 35) 15% 1.18 0.0412 0.874
(40, 50) 10% 0.38 0.0434 0.883
(40, 50) 15% 1.86 0.0327 0.912

Table 11. Sampling results of method 2 based on arrival time
and TTL against botnet B

(m,n) θ2 Number of Discrepancy, Sim

Markers 1− L

(10, 20) 10% 0.76 0.0656 0.789
(10, 20) 15% 1.16 0.0637 0.820
(25, 35) 10% 2.00 0.0422 0.835
(25, 35) 15% 2.08 0.0392 0.873
(40, 50) 10% 3.00 0.0302 0.885
(40, 50) 15% 3.04 0.0245 0.914

In our previous work, preventing a localisation attack was dependent on the probability. As shown in
Figure 6, spikes are further emphasised if each sensor captures all packets sent by attackers based on the time
selected by random numbers. This is a major problem that must be addressed. Methods 1 and 2 alleviated a
problem by sampling source countries or network hops uniformly in procedure 2 if sensors capture all packets
sent by attackers in procedure 1. As shown in Figures 7 and 8, the proposed methods curb markers if the
number of hosts managed by attackers is small and attributions are greatly biased. Figure 9 shows that our
method can prevent markers as the threshold defined in procedure 2 is low. If the number of hosts managed by
attackers is large and attributions are unbiased, the proposed methods could alleviate an impact of markers.

Figure 6. Publicised graph produced by our previous
method under the conditions of (m,n) = (25, 35)

Figure 7. Publicised graph produced by method 1
to counteract botnet A under the conditions of

(m,n) = (25, 35), threshold θ1 = 15%
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Figure 8. Publicised graph produced by method 2 to
counteract botnet A under the conditions of
(m,n) = (25, 35), threshold θ2 = 13%

Figure 9. Publicised graph produced by method 1
to counteract botnet A under the conditions of

(m,n) = (25, 35), threshold θ1 = 10%

7. CONSIDERATIONS ON THRESHOLD FLUCTUATIONS AND VERIFICATION OF
TRADE-OFF

As demonstrated by the experimental results, as the sampling parameters and the number of packets
to be acquired decrease, the resistance to localisation attacks increases; however, the information quality is
reduced. Conversely, if the number of packets to be acquired increases, information that is similar to the original
information can be obtained. The two are in a trade-off relationship. To verify this trade-off relationship, we
performed additional experiments with varying parameters for our proposed methods.

In general, similar results were obtained with methods 1 and 2, i.e., resistance to localisation attacks
improved as the threshold value decreased. By focusing on the destination port match rate, Table 12 (with a
common value for threshold θ2) shows that the match rate of the destination port fluctuates. In contrast, there
is no change in the match rate of the destination in Table 13 (with a common value for threshold θ1).

By comparing the results in Table 14 and Table 15, the destination port match rate also decreases as
the threshold θ1 decreases sharply. From this, it is considered that the influence of the ratio of transmission
source country on the matching rate of the destination port is large. Note that if the method 1 is adopted, we
need to configure random number width (m,n) as small and control threshold value θ1 to realise resistance to
localisation attacks and maintain high information quality.

Table 12. Proposed method 2: Experimental results (botnet B) with only random
number width (m, n) of sampling method focusing on arrival time and TTL

(m,n) θ2 The Number of Discrepancy, Sim

Markers 1− L

(10, 20) 0.94 0.0617 0.791
(20, 30) 1.64 0.0467 0.821
(25, 35) 10% 1.86 0.0411 0.840
(40, 50) 2.84 0.0309 0.883
(50, 60) 3.64 0.0245 0.905

Table 13. Proposed method 1: Experimental results (botnet B) with only random number
width (m, n) of sampling method focusing on arrival time and source country

(m,n) θ1 The Number of Discrepancy, Sim

Markers 1− L

(10, 20) 1.12 0.0613 0.743
(20, 30) 1.66 0.0469 0.743
(25, 35) 10% 1.92 0.0419 0.743
(40, 50) 2.68 0.0337 0.743
(50, 60) 3.66 0.0275 0.743
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Table 14. Proposed method 1: Experimental results (botnet B) with only the
threshold of sampling method focusing on arrival time and source country

(m,n) θ1 The Number of Discrepancy, Sim
Markers 1− L

5% 0.98 0.0584 0.678
(25, 35) 10% 1.92 0.0419 0.743

15% 1.84 0.0392 0.772
20% 2.08 0.0358 0.825

Table 15. Proposed method 2: Experimental results (botnet B) with only the
threshold of sampling method focusing on arrival time and TTL

(m,n) θ2 The Number of Discrepancy, Sim
Markers 1− L

5% 0.84 0.0638 0.747
(25, 35) 10% 1.86 0.0411 0.840

15% 2.06 0.0390 0.872
20% 2.08 0.0385 0.887

8. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed advanced packet sampling methods based on multiple attributes of

packets sender to increase tolerance to localisation attacks. The proposed methods can overcome the weakness
of our previous method. In other words, we conclude that the method can prevent a localisation attack without
depending on sampling time determined by random numbers along of sampling packets uniformly in terms
of source countries or number of network hops if the publicised graph contains markers. In future, we plan
to investigate a further optimal trade-off between tolerance to localisation attacks and quality of publicised
results by a darknet monitoring system. In addition, we plan to improve the packet sampling algorithm because
attackers are expected to devise increasingly complex localisation attacks.
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