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 This work derives new results for the anti-synchronization of 4D identical 
Rabinovich hyperchaotic systems by using two strategies: active and nonlinear 
control. The stabilization results of error dynamics systems are established 

based on Lyapunov second method. Control is designed via the relevant 
variables of drive and response systems. In comparison with previous 
strategies, the current controller (Nonlinear control) focused on the minimum 
possible limits for relevant variables. The better performance is realizing  
the anti-synchronization by designing a control with low terms. After 
obtaining analytical results of the proposed controller, numircal simulation is 
carried out using Matlab. The graphical results prove validity and applicability 
of proposed control without known any parameter. The proposed control has 
certain significance for reducing the time and complexity for strategy 

implementation. 
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1. INTRODUCTION  

The impetus for advances in dynamical systems has come from many sources: mathematics, 

theoretical science, computer simulation, and experimental science. The key requirement for these systems 

involves a nonlinearity. In 1990, Pecora and Carroll brought to the world the idea of synchronization of 

dynamical systems [1, 2]. Chaos synchronization has attracted considerable attention due to its important 

applications in physical systems [3], Encryption [4, 5], and secure communications [6], etc. This greatest 

success opened the way to discover another phenomenon.  

Until now, scientists realize that chaos synchronization can be observed in experiments and in 

computer models of behavior from all fields of science and engineering [7]. In addition, enormous 
synchronization phenomena have been applied in various dynamical systems such as complete synchronization 

(CS) [8-11], anti-synchronization(AS) [12], Hybrid Synchronization (HS) [13], projective synchronization 

(PS) [14], modified projective synchronization (MPS) [15] and generalized projective synchronization (GPS) 

[16]. Full synchronization and anti-synchronization are the most commonly used [17] and play an important 

role in engineering applications [18, 19]. 

These phenomena are achieved via different various types of anti-synchronization schemes including 

active control [17], adaptive control, nonlinear control [18-21] and linear feedback control [22-24]. Among  

the aforementioned schemes, active control and nonlinear control have been widely used as two powerful 

strategies for the anti-synchronization of different classes of nonlinear dynamical systems [16-20].  

The nonlinear control strategy is considered as one of the powerful tools for controlling the dynamical systems. 

However, the active control suffers from many terms corresponding to relevant variables of drive and response 

systems. To overcome this problem, the nonlinear control strategy is used with the minimum of terms  
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anti-synchronization whereas nonlinear control strategy has demonstrated excellent performance in  

anti-synchronization schemes. 

In this paper, we implement anti-synchronization between two 4D identical Rabinovich hyperchaotic 

systems based on active and nonlinear control strategies via Lyapunov second method and observed that  

the number of terms less than the first strategy. The proposed control with low terms is more interesting and 

easily applied and implemented.  

Major contributions of this work are as follows: (i) active and nonlinear control strategy based 

Lyapunov second method is utilized for anti-synchronization. (ii) Proposed controllers are exploited without 

known any parameter. (iii) A necessary and sufficient condition is proposed to show how many relevant 

variables of drive and response systems can achieve an anti-synchronization underactive and nonlinear 
controller. (iv) After deriving analytical results, numerical simulation is carried out using Matlab.  

(v) The validity and applicability of the proposed controllers are proven with graphical results. 

The rest of this paper is organized as follows. Section 2 is the description of the hyperchaotic 

Rabinovich System. Section 3 presents the problem of anti-synchronization for the hyperchaotic Rabinovich. 

Section 4 is the conclusions of this paper. 

 

 

2. DECRIPTION OFHYPERCHAOTIC RABINOVICH SYSTEM 

Rabinovich system is a four-dimensional hyperchaotic which include ten terms, three of them are 

nonlinearity with three parameters and descript by the following form [25, 26]: 

 

{  

�̇�1 = −𝑎𝑥1 + ℎ𝑥2 + 𝑥2𝑥3   
�̇�2 = ℎ𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑥4

�̇�3 = −𝑥3 + 𝑥1𝑥2                  
�̇�4 = −𝑘𝑥2                             

 (1) 

 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 are the state variables and 𝑎 = 4, ℎ = 6.75, 𝑘 = 2 are positive constants. Figures 1-2 show 

the attractor of system (1):  
 

 

 
 

Figure 1. The attractor of system (1) in 𝑥2 − 𝑥4 

plane 

 
 

Figure 2. The attractor of system (1) in 𝑥1, 𝑥2, 𝑥4 
space 

 

 

3. ANTI-SYNCHRONIZATION BETWEEN TWO IDENTICAL HYPERCHAOTIC 

RABINOVICH SYSTEM 

In order to achieve anti-synchronization for the Rabinovich system, two systems are needed, the first 

system (1) is called the drive system, and the second system is called the response system. The response system 

for the Rabinovich system depicts in (2). 

 

{

�̇�1 = −𝑎𝑦1 + ℎ𝑦2 + 𝑦2𝑦3 + 𝑢1    
�̇�2 = ℎ𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑦4 + 𝑢2

�̇�3 = −𝑦3 + 𝑦1𝑦2 + 𝑢3                    
�̇�4 = −𝑘𝑦2 + 𝑢4                               

 (2) 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 1, July 2020 :  380 - 387 

382 

where 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] 𝑇 is the controller to be designed, the anti-synchronization error 𝑒 ∈ 𝑅4 is defined 
as : 

𝑒1 = 𝑦1 − 𝛼𝑖𝑥1   , 𝑒2 = 𝑦2 − 𝛼𝑖𝑥2  ,  𝑒3 = 𝑦3 − 𝛼𝑖𝑥3 , 𝑒4 = 𝑦4 − 𝛼𝑖𝑥4 , ∀𝛼𝑖 = −1  ,   ∀𝛼𝑖 = −1  ,   𝑖 = 1,2,3,4 
So, the error dynamical system is given by: 

 

{

�̇�1 = −𝑎𝑒1 + ℎ𝑒2 + 𝑒2𝑒3 − 𝑥3𝑒2 − 𝑥2𝑒3 + 2𝑥2𝑥3 + 𝑢1 
�̇�2 = ℎ𝑒1 − 𝑒2 + 𝑒4 − 𝑦1𝑒3 − 𝑥3𝑒1 + 2𝑦1𝑥3 + 𝑢2            
�̇�3 = −𝑒3 + 𝑒1𝑒2 − 𝑥2𝑒1 − 𝑥1𝑒2 + 2𝑥1𝑥2 + 𝑢3                 
�̇�4 = −𝑘𝑒2 + 𝑢4                                                                        

  (3) 

 

3.1 Anti-synchronization based on active control 

To realize the anti-synchronization, we need to design suitable nonlinear control. Therefore,  

the control functions are chosen as the following: 

 

 { 

𝑢1 = −𝑒2𝑒3 + 𝑥3𝑒2 + 𝑥2𝑒3 − 2𝑥2𝑥3 + 𝑣1 
𝑢2 = 𝑦1𝑒3 + 𝑥3𝑒1 − 2𝑦1𝑥3 + 𝑣2                   
𝑢3 = −𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2 − 2𝑥1𝑥2 + 𝑣3  
𝑢4 = 𝑣4                                                               

 (4) 

 

inserting the control (4) in (3) we get: 

 

{

�̇�1 = −𝑎𝑒1 + ℎ𝑒2 + 𝑣1   
�̇�2 = ℎ𝑒1 − 𝑒2 + 𝑒4 + 𝑣2

�̇�3 = −𝑒3 + 𝑣3                   
�̇�4 = −𝑘𝑒2 + 𝑣4                

,  𝑣 = [𝑣1 𝑣2
𝑣3 𝑣4]𝑇 = 𝐴[𝑒1 𝑒2

𝑒3 𝑒4]𝑇 (5) 

 

where 𝑣 is linear control, 𝐴 is a constant matrix. To make the system (5) stable, the matrix 𝐴 should be selected 

by the following: 

 

𝐴 = [

(𝑎 − 1) −ℎ 0   0
−ℎ (1 − 2𝑎)  0 −1

   
0
0

   
0
𝑘

−2   0
  0 −𝑘

] (6) 

 

hence, the error dynamical system (3) with above  matrix becomes: 

 

{

�̇�1 = −𝑒1     
�̇�2 = −2𝑎𝑒2

�̇�3 = −3𝑒3   
�̇�4 = −𝑘𝑒4  

  (7) 

 

therefore, the above system has all eigenvalues with negative real parts. These eigenvalues guarantee  

the stability of the system (7). So, the response system (2) is anti-synchronization with the drive system. Hence, 

we reach the following results. 

Theorem 1: If the matrix (6) is combined with the system (5), then, the response system (2) unfollows the drive 

system (1) via the following nonlinear active control which consists of (21) terms. 

 

{

𝑢1 = (a − 1)𝑒1 − ℎ𝑒2 − 𝑒2𝑒3 + 𝑥3𝑒2 + 𝑥2𝑒3 − 2𝑥2𝑥3   
𝑢2 = −ℎ𝑒1 + (1 − 2a)𝑒2 − 𝑒4 + 𝑦1𝑒3 + 𝑥3𝑒1 − 2𝑦1𝑥3  
𝑢3 = −2𝑒3 − 𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2 − 2𝑥1𝑥2                       
𝑢4 = 𝑘𝑒2 − 𝑘𝑒4                                                                        

 (8) 

 

Proof: Based on the Lyapunov second method, we construct a positive definite Lyapunov candidate function 

as: 

 

V(e) = 𝑒𝑇𝑝𝑒 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2
𝑒3

2 +
1

2
𝑒4

2  (9) 
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where 𝑃 = 𝑑𝑖𝑎𝑔 [
1

2
 ,

1

2
,

1

2
,

1

2
] , the derivative of the Lyapunov function V(e) with respect to time is: 

�̇�(𝑒) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 + 𝑒4�̇�4  
 

�̇�(𝑒) = 𝑒1(−𝑒1) + 𝑒2(−2𝑎𝑒2) + 𝑒3(−3𝑒3) + 𝑒4(−𝑘𝑒4)   
 

�̇�(𝑒) = −𝑒1
2 − 2𝑎𝑒2

2 − 3𝑒3
2 − 𝑘𝑒4

2 = −𝑒𝑇𝑄𝑒 ,  𝑄 = 𝑑𝑖𝑎𝑔[ 1, 2𝑎, 3, 𝑘] (10) 
 

Every diagonal matrix with positive diagonal elements is positive definite. So 𝑄 > 0. Therefore, �̇�(𝑒) 

is negative definite. And according to the Lyapunov asymptotical stability theory, the nonlinear active 

controller is implemented and the anti-synchronization of the hyperchaotic system is achieved. The proof is 

now complete. The theorem 1 shows that proposed control which consists of (21) terms achieved  

anti-synchronization in Figure 3. 
 

 

 
 

 
 

 

Figure 3. Anti-synchronization between systems (1) and (2) with control (8) 

 

 

3.2. Anti-Synchronization based on nonlinear control strategy 

In this section, anti-synchronization between system (1) and system (2) is considered by using another 

strategy which is called nonlinear control. 
Theorem 2: The system (3) is stable, if design a controller consists of (12) terms as follows:  

 

{  

𝑢1 = 2(𝑥2𝑒3 − 𝑥2𝑥3)                              
𝑢2 = −2((ℎ − 𝑥3)𝑒1 + 𝑦1𝑥3) + 𝑥1𝑒3 
𝑢3 = −2(𝑒1𝑒2 + 𝑥1𝑥2 ) + 𝑦1𝑒2            
𝑢4 = (𝑘 − 1)𝑒2 − 𝑒4                               

 (11) 

 
Proof: With this choice, the error dynamical system (3) becomes 
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[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

−𝑎   
−ℎ + 𝑥3

−𝑒2 − 𝑥2

0

   

ℎ − 𝑥3   
−1

−𝑥1 + 𝑦1

−1

   

𝑒2 + 𝑥2 
−𝑦1 + 𝑥1 

−1
0

   

0
1
0

−1

  ] [

𝑒1

𝑒2

𝑒3

𝑒4

]  

i.e. 

{

�̇�1 = −𝑎𝑒1 + ℎ𝑒2 + 𝑒2𝑒3 − 𝑥3𝑒2 + 𝑥2𝑒3       
�̇�2 = −ℎ𝑒1 − 𝑒2 + 𝑒4 − 𝑦1𝑒3 + 𝑥3𝑒1 + 𝑥1𝑒3

�̇�3 = −𝑒3 − 𝑒1𝑒2 − 𝑥2𝑒1 − 𝑥1𝑒2 + 𝑦1𝑒2        
�̇�4 = −𝑒2 − 𝑒4                                                     

 (12) 

 
The Lyapunov function and it is derivative as (13) and (14) respectively: 

 

V(e) = 𝑒𝑇𝑝𝑒 (13) 
 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 = −𝑒𝑇𝑄𝑒 (14) 
 

So 𝑄 > 0. Therefore, �̇�(𝑒) is negative definite. The theorem 2 showed that proposed control which consists of 

(12) terms achieved anti-synchronization in Figure 4. 

 
 

  

  
 

Figure 4. Anti-synchronization between systems (1) and (2) with control (11) 
 

 

Theorem 3: If the controller is designed with (12) terms as follows: 

 

{  

𝑢1 = −2(ℎ𝑒2 + 𝑒2𝑒3 − 𝑥3𝑒2 + 𝑥2𝑥3)  
𝑢2 = 𝑥1𝑒3 − 𝑒4 − 2𝑦1𝑥3                          
𝑢3 = 2(𝑒1 − 𝑥1)𝑥2  + 𝑦1𝑒2                     
𝑢4 = 𝑘𝑒2 − 𝑒4                                            

 (15) 
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then, the response system (2) unfollow the drive system (1) via the following nonlinear control. 

Proof: When substituting the controllers (15) in the system (3), we get: 

 

{

�̇�1 = −𝑎𝑒1 + (−ℎ + 𝑥3)𝑒2 − (𝑒2 + 𝑥2)𝑒3 

�̇�2 = (ℎ − 𝑥3)𝑒1 − 𝑒2 + (−𝑦1 + 𝑥1)𝑒3       

�̇�3 = (𝑒2 + 𝑥2)𝑒1 + (−𝑥1 + 𝑦1)𝑒2 − 𝑒3     
�̇�4 = −𝑒4                                                           

 (16) 

 

Construct Lyapunov function as:  

V(e) = 𝑒𝑇𝑝𝑒 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2
𝑒3

2 +
1

2
𝑒4

2 

 
Then  

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 = −𝑒𝑇𝑄𝑒 

 

So, V(e) > 0 and �̇�(𝑒) < 0, the nonlinear controller is implemented. The theorem 3 showed that proposed 
control which consists of (12) terms achieved anti-synchronization in Figure 5. 

 

 

  
  

  
 

Figure 5. Anti- synchronization between systems (1) and (2) with control (15) 

 

 

Theorem 4: The system (3) is achieved. If the controller is designed as: 

 

{

𝑢1 = −2(𝑥2 − 𝑒2)𝑥3                                
𝑢2 = −2ℎ𝑒1 + 𝑦1𝑒3 − 2𝑦1𝑥3                 
𝑢3 = −2(𝑒2 − 𝑥2)𝑒1 + 𝑥1(𝑒2 − 2𝑥2)  
𝑢4 = (𝑘 − 1)𝑒2 − 𝑒4                                

  (17) 
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then, the response system (2) unfollows the drive system (1) via the following nonlinear control. 

Proof: Using system (3) with the controller (17) is given by: 

{

�̇�1 = −𝑎𝑒1 + (ℎ + 𝑥3)𝑒2 + (𝑒2 − 𝑥2)𝑒3   

�̇�2 = −(ℎ + 𝑥3)𝑒1 − 𝑒2 + 𝑒4                        
�̇�3 = (𝑥2 − 𝑒2)𝑒1 − 𝑒3                                   
�̇�4 = −𝑒2 − 𝑒4                                                 

 (18) 

 

The same results were found in theorem (3). The theorem 4 showed that proposed control which 

consists of (12) terms achieved anti-synchronization in Figure 6. 
 

 

  

  
 

Figure 6. Anti-synchronization between systems (1) and (2) with control (17)  

 

 

4. CONCLUSION 

In the paper, the anti-synchronization problem for 4-D Rabinovich hyperchaotic system is considered, 

based on two strategies: active and non-linear controller. The stability of error dynamical systems are 

established based on the Lyapunov theory and compared between these strategies It was found that both of 

them lead to anti-synchronization, but the performance of the number of terms of the nonlinear controller is 

less than the active control. 
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