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1. INTRODUCTION

The Phishing defined as a way of attempting to acquire information such as usernames, passwords,
and credit card details by masquerading as a trustworthy entity in electronic communication. It is a tool used
by cyber criminals to steal personal information from the user. The criminals will create a fake website that
looks the same as the real websites. The user will get fraud by entering their confidential information such as
password, bank details and account credentials into the fake websites [1-3]. The criminal will then use the
information provided to access the account to buy stuff, transfer money, or other damaging activities [3, 4].
For example, in 2016 the phishing attack up to 65% worldwide which costs about $1.6 million [5].
The number of phishing attacks has increased significantly in recent years, where 2.3 million sites create in
May 2017 [6]. Approximately nearly 1.5 million phishing sites created each month [6]. Over the years,
phishing attacks have increased globally. The total number of phishes detected was 263,538 in first quartile
2018. This increased by 46 percent compared to the 180,577 observed in fourth quartile 2017. It was also
considerably more than in third quartile 2017 in 190,942 [7]. Figure 1 illustrates the statistic of
phishing attacks.
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Figure 1 demonstrates the increasing of phishing websites from the year 2017 until March 2018.
The increasing of websites also because there a lot of phishing toolkits such as Rock Phish and Super Phisher
that make easy for attackers to create fraudulent websites [8]. This fraudulent website able to steal the source
code normal websites [8]. Therefore, there is a need for an effective anti-phishing solution for detecting
phishing websites and control this internet threat. There are several anti-phishing detections that has been
developed by the previous researcher such as using heuristic [9], blacklist [10], and content-based
approach [11]. Even though these anti-phishing solutions have been solving phishing attacks, but the users
still prone to new phishing attacks. This happens because attackers are not static in their activities; attackers
always change their mode activities as often as possible to stay undetected [12, 13]. This motivates this paper
into seeking a new solution to solve known and unknown phishing websites.
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Figure 1. Statistic of phishing attack

Although they are many existing systems for detecting phishing website, however, there are still
have room for improvement in detecting phishing websites. Even though properly applied technology,
along with security awareness able to reduce the phishing attacks, but it difficult to apply in daily life [14].
For example, email has their own protection approach from a phishing attack, but unable to protect from
emerging phishing attack patterns [11, 15]. This is because email used existing phishing patterns, thus
making users prone to new phishing attacks. This led to the discovery of machine learning classifiers to
detect phishing attacks.

Machine learning is a part of artificial intelligence (Al) that apply data mining approach to discover
unknown or existing features from the dataset [16, 17]. Then the features will be used with a classification
algorithm to classify either phishing or normal. This paper proposes a phishing detection system which is
used to identify phishing attacks as well as to examine the presence of dangerous in websites. The proposed
study applies a heuristic based approach and using features from the websites. Hence, the focus of this paper
is to detect a phishing attack on the website, the main contributions of this paper are the following:

a) The evaluation study applied phishing website features for a malicious and benign sample from
PhishTank dataset.

b) The proposed particle swarm optimization has improved the optimization of phishing website features
using tenfold cross-validation.

c) The proposed naive random forest has increased the accuracy in classifying the phishing attacks on
websites applications.

The rest of the paper is organized as follows. In Section 2 discusses related works of the research.
Section 3 describes the methodology which includes features optimization and general architecture. Section 4
evaluates the effectiveness of phishing detection system. Lastly, Section 5 conclusion of this paper.

2. RELATED WORK

There are currently various types of phishing attacks. It has been categorized into three different
types which are deceptive phishing, malware based phishing and content injection phishing. Deceptive
phishing is the messages required to verify account information, requesting that users re-enter their
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information, bogus account charges, unwanted account changes, new free services requiring immediate
action, and many other malicious sites are sent to many recipients in the hope that the unsuspecting person
will react by clicking on a link to or signing on a fake site [15]. Malware-based phishing refers to attacks that
lead to the installation and execution of malicious software on computers of users [18, 19]. Malware is
generally introduced as an email attachment that can be downloaded. Malware commonly installed in
phishing attacks includes keyloggers and screen grabbers, spyware that captures and logs input keyboards or
display the screen and sends information to the phisher. In other cases, the target of the attack is to control the
computer of the victim [20]. The injection of content is a technique in which the phisher changes a part of the
content on a reliable website page. This is done in order to mislead the user to go to a page outside the
legitimate website where personal information is to be entered [15, 21].

Three types of approaches are used to phishing attacks which are a blacklist based approach,
content-based approach, and heuristic-based approach. A blacklist is a list of malicious URLs [17]. Blacklist
is obtained using a number of methods, such as heuristics from web crawlers, manual voting, and honeypots.
When a website is visited, the browser refers it to the blacklist to check whether the current URL is included
in the list [21]. The drawback of this approach is that blacklists cannot normally cover all phishing websites
because a newly created fraudulent website takes a considerable amount of time before it is added [16].
Content-based technique for the detection of phishing websites using the term- frequency-inverse document-
frequency (TF-IDF) measurements [22]. Heuristic-based approaches collect features from the website to
identify them as either phishing or legitimate [20]. Unlike the blacklist method, a heuristic solution can
identify in real time newly created phishing websites. The efficiency of the heuristic methods depends on the
selection of a set of discriminative features that could help to distinguish the website type.

3. RESEARCH METHOD

Explaining The phishing detection system consists of five components that are collect data,
define phishing features, create a model, testing and finally, the result will be compared. Figure 2 shows the
component of the phishing detection system.

Collect Data Define Phishing
Features
m Testing PR Create Model

Figure 2. Component of phishing detection system

3.1. Data Collection

The first part of the implementation is to collect dataset. The dataset phase is important for
maintaining result accuracy. The dataset will give more understanding and explanation of phishing and legit
activities. For further examination, the dataset is then analyzed and the results are used to foresee or predict
the future events in phishing.

All the features were collected from (Mohammad, McCluskey, & Thabtah, 2012). There are a total
of 30 phishing website features that have been collected. This dataset collected mainly from a well-known
phishing database, PhishTank archive, MillerSmiles archive and Google search operators. The collected
dataset holds categorical values those are “Legitimate”, ”Suspicious” and “Phishy”, these values have been
transformed to numerical values by replacing the values “1”, “0” and “-1” instead of ‘Legitimate”,
“Suspicious” and “Phishy” respectively [19, 20].

3.2. Machine Learning Approach

Machine learning approach is used to ensure that website users are able to optimize the phishing
features through the feature optimization approach. This approach provides shorter training and testing time
thus it simplifies the phishing detection system. This study applied WEKA tools (Waikato Environment for
Knowledge Analysis). It is a popular machine learning software program developed in Java at Waikato
University, New Zealand [23, 24]. WEKA supports a number of standard data mining tasks, including data
pre-processing, clustering, classification, regression, visualization and selection of features [4, 19, 25].
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Feature selection methods were used to identify and remove irrelevant and redundant attributes from
data that do not contribute to the accuracy of a predictive model [26].The features of the phishing website
were first trained and then classified by using significant features. In order to choose the significant features
for effective phishing website detection, this study applies the feature selection approach. Hence, the number
of phishing features was reduced from 30 features to 15 features only. This is to ensure that there is a unique
pattern appearing between the normal and phishing websites. Then this features trained and testing using
machine learning classifier. The result from the machine learning classifiers will become the phishing
detection model. Lastly, this model used for testing the phishing websites. Table 1 presents the list of

phishing website features used by the study.

Table 1. Phishing Website Features

Phishing Features

Description

SSLFinal_State
URL_of_Anchor
Website Traffic
Prefix_Suffix
Page_Rank

Having_Sub_domain

Age_of_domain
Domain_registration_length

Request_URL

Links_in_tags

DNSRecord

Google_Index
Links_pointing_to_page

SSL Certificates are small data files that digitally bind a cryptographic key to an organization’s
details. When installed on a web server, it activates the padlock and the https protocol and allows
secure connections from a web server to a browser.

An anchor is an element defined by the <a> tag. This feature is treated exactly as “Request URL”.
This feature measures the popularity of the website by determining the number of visitors and the
number of pages they visit.

The dash symbol is rarely used in legitimate URLs. Phishers tend to add prefixes or suffixes separated
by (-) to the domain name so that users feel that they are dealing with a legitimate webpage.

PageRank is a value ranging from “0” to “1”. PageRank aims to measure how important a webpage is
on the Internet. The greater the PageRank value the more important the webpage.

A subdomain is a domain that is a part of a larger domain under the Domain Name System (DNS)
hierarchy. It is used as an easy way to create a more memorable Web address for specific or unique
content with a website.

This feature can be extracted from WHOIS database (Whois 2005). Most phishing websites live for a
short period of time.

Based on the fact that a phishing website lives for a short period of time, it was believed that
trustworthy domains are regularly paid for several years in advance.

Request URL examines whether the external objects contained within a webpage such as images,
videos and sounds are loaded from another domain. In legitimate webpages, the webpage address and
most of the objects embedded within the webpage are sharing the same domain.

It is common for legitimate websites to use <Meta> tags to offer metadata about the HTML
document; <Script> tags to create a client-side script; and <Link> tags to retrieve other web resources.
It is expected that these tags are linked to the same domain as the webpage.

DNS records are basically mapping files that tell the DNS server which IP address each domain is
associated with, and how to handle requests sent to each domain

This feature examines whether a website is in Google’s index or not.

The number of links pointing to the webpage indicates its legitimacy level, even if some links are of
the same domain (Dean, 2014).

SFH Server Form Handler (SFH) that contain an empty string or “about: blank™ is considered doubtful
because action should be taken upon the submitted information. In addition, if the domain name in
SFHs is different from the domain name of the webpage, this reveals that the webpage is suspicious
because the submitted information is rarely handled by external domains.

URL_Length To ensure the accuracy of our study, it has been calculated the length of URLs in the dataset and

produced an average URL length. The results showed that if the length of the URL is greater than or
equal 54 characters then the URL classified as phishing. By reviewing our dataset we were able to
find 1220 URLSs lengths equals to 54 or more which constitute 48.8% of the total dataset size.

4. RESULTS AND ANALYSIS

This research applies the supervised machine learning approach since the sample data set have
labels (phishing and normal). In addition, supervised machine learning offers good results through the
reduction of errors. This study implements four classifiers in order to observe the distinctive results noted in
the various machine learning classifiers. The four classifiers are Random Forest (RF), J48, Multi-Layer
Perceptron (MLP) and K-Nearest Neighbors (KNN). This study used the parameters for evaluation such as
accuracy, FPR, precision, recall, and f-measure to investigate the different measurements. Table 2 shows the
results achieved after training and testing the dataset using four classifiers.

Table 2. Performance of Each Classifiers

Classifiers Accuracy (%) FPR Precision (%) Recall (%) F-measure (%)
Random Forest 94.79 53 94.8 94.8 94.8
J48 93.93 6.0 94.0 93.9 93.9
MLP 93.28 7.0 93.3 93.3 93.3
KNN 93.08 6.8 93.1 93.1 93.1
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The results indicated that random forest classifiers had achieved the highest accuracy result of 94.79
percent when compared to KNN which achieved only 93.08 percent. This outcome shows that the random
forest classifiers are more effective than other selected classifiers in detecting phishing website. It also shows
that feature selection plays a crucial role in determining the effectiveness of phishing website detection.
The high precision rate shows that the classifier produced more relevant results and producing
accurate results.

4.1. Confusion Matrix

A confusion matrix is a technique for summarizing the performance of a classification model.
The table shows two possible classes’ prediction, normal and phishing. For example, if a model predicts the
presence of phishing activities, the result will show “phishing” and vice versa. Table 3 shows the
performance of the four classifiers.

The Table 3 shows that the study produced corrected and magnificent results by predicting the
unknown phishing with 1033 for the J48 classifiers. In the incorrectly predicted perspective, the J48 shows
the most minimal value. Hence, the outcomes show that J48 classifiers able to predict unknown phishing
more accurately.

Table 3. Confusion Matrix of Classifiers

- Predicted
Classifiers Actual Predicted normal Predicted phishing

RF Actual normal 1032 62
Actual phishing 66 1296

J48 Actual normal 1033 61
Actual phishing 88 1274

MLP Actual normal 1005 89
Actual phishing 76 1286

KNN Actual normal 1023 71
Actual phishing 99 1263

4.2. Receiver Operating Characteristics Curve (ROC)

In this study, based on the phishing website features, the processes were classified as hormal and
phishing. Aside from using the performance matrix, this study also calculated the receiver operating
characteristics (ROC) curve for each of the machine learning classifiers. In this phase, the TPR was regarded
as the detection rate which will correctly predict the phishing process and the FPR was selected as the
detection rate which incorrectly predicted normal as phishing. Figure 3 demonstrates ROC curve.
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Figure 3. ROC curve
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The horizontal axis in the above figure indicates the error detection rate meanwhile the vertical axis
indicates the detection rate. Four lines represent the individual ROC curve of the machine learning classifiers.
The ROC curve is difficult to compare because it seems to be similar under the same conditions. Hence, the
area under the curve (AUC) was used to measure detection accuracy. The AUC results identified were able to
measure whether the detection approach was good or bad. An area of 1 shows perfect prediction while an
area of 0.5 shows a bad prediction.

Table 4 shows that the random forest and MLP classifiers provide the best AUC values, with over
0.97. This signifies perfect prediction. Overall, the curve and the AUC values confirmed that the most recent
phishing experiments had provided compelling accurate results in the phishing website applications
detection.

Table 4. AUC Results

Classifier AUC Indicator
Random Forest 0.985 Perfect prediction
KNN 0.961 Perfect prediction
MLP 0.978 Perfect prediction
J48 0.957 Perfect prediction

5. CONCLUSION

This paper has presented the performance of the proposed approach in detecting phishing attacks.
The proposed approach that implements the machine learning classifier and has correctly classified phishing
by using relevant features. In the experiments, this paper considers applied real phishing and benign samples
application dataset. The experiment results show that the proposed approach recorded high accuracy in
classifying the phishing.

ACKNOWLEDGEMENTS
This work was supported by Universiti Malaysia Pahang, under the Grant Faculty of Computer
Systems and Software Engineering (FSK1000), RDU1803163.

REFERENCES

[1] A. Firdaus, N. B. Anuar, M. F. A. Razak, and A. K. Sangaiah, “Bio-inspired computational paradigm for feature
investigation and malware detection: interactive analytics,” Multimed. Tools Appl., 2017.

[2] Muhammad Taseer Suleman and Shahid Mahmood Awan, “Optimization of URL-Based Phishing Websites
Detection through Genetic Algorithms,” Autom. Control Comput. Sci., vol. 53, no. 4, pp. 333-341, 2019.

[3] A.Kulkarni and L. L., “Phishing Websites Detection using Machine Learning,” Int. J. Adv. Comput. Sci. Appl., vol.
10, no. 7, 2019.

[4] M. Hazim, N. B. Anuar, M. F. Ab Razak, and N. A. Abdullah, “Detecting opinion spams through supervised
boosting approach,” PLoS One, vol. 13, no. 6, pp. 1-23, 2018.

[5] PhishMe, “Analysis of Susceptibility, Resiliency and Defense Against Simulate and Real Phishing Attacks,” 2017.

[6] W. S. Cybersecurity, “Nearly 1.5 Million New Phishing Sites Created Each Month,” Webroot Smarter
Cybersecurity, 2017. .

[7] APWG, “APWG Phishing Attack Trends Reports,” APWG Unifying Global Response to Cybercrime, 2018. .

[8] R. Gowtham and I. Krishnamurthi, “A comprehensive and efficacious architecture for detecting phishing
webpages,” Comput. Secur., vol. 40, pp. 23-37, 2014.

[9] S. G. Selvaganapathy, M. Nivaashini, and H. P. Natarajan, “Deep belief network based detection and categorization
of malicious URLSs,” Inf. Secur. J., vol. 27, no. 3, pp. 145-161, 2018.

[10] L. McCluskey, F. Thabtah, and R. M. Mohammad, “Intelligent rule-based phishing websites classification,” IET Inf.
Secur., vol. 8, no. 3, pp. 153-160, 2014.

[11] A. A. Akinyelu and A. O. Adewumi, “Classification of phishing email using random forest machine learning
technique,” J. Appl. Math., vol. 2014, 2014.

[12] M. F. A. Razak, N. B. Anuar, R. Salleh, A. Firdaus, M. Faiz, and H. S. Alamri, “‘Less Give More’: Evaluate and
zoning Android applications,” Meas. J. Int. Meas. Confed., vol. 133, pp. 396-411, 2019.

[13] M. Akiyama, T. Yagi, T. Yada, T. Mori, and Y. Kadobayashi, “Analyzing the ecosystem of malicious URL
redirection through longitudinal observation from honeypots,” Comput. Secur., vol. 69, pp. 155-173, 2017.

[14] B. Li, G. Yuan, L. Shen, R. Zhang, and Y. Yao, “Incorporating URL embedding into ensemble clustering to detect
web anomalies,” Futur. Gener. Comput. Syst., vol. 96, pp. 176-184, 2019.

[15] S. Nisha and A. N. Madheswari, “Secured authentication for internet voting in corporate companies to prevent
phishing attacks,” vol. 22, no. 1, pp. 4549, 2016.

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 3, March 2020 : 1165 - 1171



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 o 1171

[16] H. B. Kazemian and S. Ahmed, “Comparisons of machine learning techniques for detecting malicious webpages,”
Expert Syst. Appl., vol. 42, no. 3, pp. 1166-1177, 2015.

[17] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and Evaluation of a Real-Time URL Spam Filtering
Service,” 2011 IEEE Symp. Secur. Priv., pp. 447-462, 2011.

[18] A. Firdaus, N. B. Anuar, M. F. A. Razak, I. A. T. Hashem, S. Bachok, and A. K. Sangaiah, “Root Exploit Detection
and Features Optimization: Mobile Device and Blockchain Based Medical Data Management,” J. Med. Syst., vol.
42, no. 6, 2018.

[19] M. F. A. Razak, N. B. Anuar, F. Othman, A. Firdaus, F. Afifi, and R. Salleh, “Bio-inspired for Features
Optimization and Malware Detection,” Arab. J. Sci. Eng., 2018.

[20] J. A. Chaudhry, S. A. Chaudhry, and R. G. Rittenhouse, “Phishing attacks and defenses,” Int. J. Secur. its Appl., vol.
10, no. 1, pp. 247-256, 2016.

[21] R. Gowtham and I Krishnamurthi, “A comprehensive and efficacious architecture for detecting phishing
webpages,” Comput. Secur., vol. 40, pp. 23-37, 2014.

[22] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 2, pp. 1-28,
2011

[23] R. Thakur, “Preprocessing and Classification of Data Analysis in Institutional System using Weka,” vol. 112, no. 6,
pp. 9-11, 2015.

[24] F. Afifi, N. B. Anuar, S. Shamshirband, and K.-K. R. Choo, “DyHAP: Dynamic Hybrid ANFIS-PSO Approach for
Predicting Mobile Malware,” PL0S One, vol. 11, no. 9, p. 0162627, 2016.

[25] C. Science, “Comparative evaluation of the different data mining techniques, ” vol. 10, no. 3, pp. 233-238, 2016.

[26] T. Chou and J. Pickard, “Machine Learning based IP Network Traffic Classification using Feature Significance
Analysis,” vol. 16, no. 3, pp. 9-12, 2018.

Phishing detection system using machine learning classifiers (Nur Sholihah Zaini)



