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ABSTRACT

In this article, new modifications of the homotopy methods are presented and applied
to non-homogeneous fractional Volterra integro-differential equations with boundary
conditions. A comparative study between the new modified homotopy perturbation
method (MHPM) and the new modified homotopy analysis method (MHAM). Several
illustrative examples are given to demonstrate the effectiveness and reliability of the
methods.
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1. INTRODUCTION
In this paper, we shall be concerned with the non-homogeneous fractional Volterra integro-differential

equations of the second kind of the form: ∫ x

0

Ψ(x, t)∆(y(t))dt, (1)
cDαy(x) = f(x)y(x) + Θ(x) + 

y(k)(0) = dk, (2)
y(k)(1) = ck, k = 1, · · · , n, n− 1 < α ≤ n, 0 ≤ x ≤ 1, n ∈ N, (3)

where cDα denotes a differential operator with fractional order α, and the Θ(x), f(x) and Ψ(x, t) are holo-
morphic functions, ∆(y(t)) is a polynomial of y(t) with constant coefficients.

The homotopy analysis method (HAM) proposed by Liao in 1992 and the homotopy perturbation
method (HPM) proposed by He in 1998 are compared through an evolution equation used as the second exam-
ple in a recent paper by Ganji et al. It is found that the HPM is a special case of the HAM when ~ = 1. The
well-known and powerful HAM is based on both Homotopy in topology and the McLaurin series. In one of
his pioneering articles, he claimed that the method does not require either small or large parameters comparing
with the perturbation techniques. The general concept of this method has been considered by many researchers
in their published works [1–5].

The fractional integro-differential equations have attracted much more interest of mathematicians and
physicists which provides an efficiency for the description of many practical dynamical arising in engineer-
ing and scientific disciplines such as, physics, biology, electrochemistry, chemistry, economy, electromagnetic,
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with the boundary conditions



372 r ISSN: 2502-4752

control theory and viscoelasticity [1, 2, 6–15]. In recent years, many authors focus on the development of
numerical and analytical techniques for fractional integro-differential equations. For instance, we can recall
the following works. Al-Samadi and Gumah [16] applied the HAM for fractional SEIR epidemic model,
Zurigat et al. [17] applied HAM for system of fractional integro-differential equations. Yang and Hou [18]
applied the Laplace decomposition method to solve the fractional integro-differential equations, Mittal and
Nigam [19] applied the Adomian decomposition method to approximate solutions for fractional integro-
differential equations. Ma and Huang [20] applied hybrid collocation method to study integro-differential
equations of fractional order. Moreover, properties of the fractional integro-differential equations have been
studied by several authors [7, 21–27]. The main objective of the present paper is to study the behavior of the
solution that can be formally determined by analytical approximated methods as the MHAM and MHPM.

2. PRELIMINARIES
In this section, we give f fractional calculus theory which are further used in this paper

[2, 7, 25, 28, 29].

Definition 2..1 A real function f(x), x > 0, is said to be in the space Cε, ε ∈ R, if there exists a real number
p > ε such that f(x) = xpf1(x), where f1(x) ∈ C[0, 1). Clearly Cε ⊂ Cω if ω ≤ ε.

Definition 2..2 A function f(x), x > 0, is said to be in the space Cnε , n ∈ N ∪ {0}, if f (n) ∈ Cε.

Definition 2..3 [2] The Riemann-Liouville fractional integral of order α > 0 of a function f ∈ Cε, ε ≥ −1 is
defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (4)

where R+ is the set of positive real numbers.

Definition 2..4 [21] The fractional derivative of f(x) ∈ Cn−1, n ∈ N ∪ {0} in the Caputo sense is defined by

cDαf(x) = Jn−αDnf(x)

=


1

Γ(n−α)

∫ x
0

(x− t)n−α−1 d
nf(t)
dtn dt, n− 1 < α < n,

dnf(x)
dxn , α = n,

(5)

where the parameter α is the order of the derivative, in general it is real or even complex. But in this chapter,
we will consider α as positive real.
Hence, we have the following properties:

1. JαJvf = Jα+vf, α, v > 0.

2. Jαxβ = Γ(β+1)
Γ(α+β+1)x

α+β , α > 0, β > −1, x > 0.

3. JαDαf(x) = f(x)−
∑m−1
k=0 f (k)(0+)x

k

k! , m− 1 < α ≤ m.

Definition 2..5 [8] The Riemann-Liouville fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m. (6)

Theorem 2..1 [2] (Banach contraction principle). Let (X, d) be a complete metric space, then each contrac-
tion mapping T : X −→ X has a unique fixed point x of T in X i.e. Tx = x.

Theorem 2..2 [2] (Schauder’s fixed point theorem). Let X be a Banach space and let A a convex, closed
subset of X . If T : A −→ A be the map such that the set {Ty : y ∈ A} is relatively compact in X (or T is
continuous and completely continouous). Then T has at least one fixed point y∗ ∈ A : Ty∗ = y∗.
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3. DESCRIPTION OF THE METHOD
Some powerful methods have been focusing on the development of more advanced and efficient

methods for integro-differential equations such as the HAM and HPM [2, 27, 30, 31]. We will describe these
methods in this section:

3.1. Homotopy analysis method (HAM)
The basic concept behind the HAM is illustrated by using the following nonlinear equation:

N [y] = 0,

where N is a nonlinear operator, y(x) is unknown function and x is an independent variable. Let y0(x) denote
an initial guess of the exact solution y(x), ~ 6= 0 an auxiliary parameter, H1(x) 6= 0 an auxiliary function,
and L an auxiliary linear operator with the property L[s(x)] = 0 when s(x) = 0. Then using q ∈ [0, 1] as an
embedding parameter, we can construct a homotopy when consider, N [y] = 0, as follows [2]:

(1− q)L[φ(x; q)− y0(x)]− q~H1(x)N [φ(x; q)]

= Ĥ[φ(x; q); y0(x), H1(x), ~, q]. (7)

It should be emphasized that we have great freedom to choose the initial guess y0(x), the auxiliary linear
operator L, the non-zero auxiliary parameter ~, and the auxiliary function H1(x). Enforcing the homotopy (7)
to be zero, i.e.,

Ĥ (8)

(9)

1[φ(x; q); y0(x), H1(x), ~, q] = 0,

φ(x; 0) = y0(x), (10)

and when q = 1, since ~ 6= 0 and H1(x) 6= 0, the zero-order deformation (9) is equivalent to

φ(x; 1) = y(x). (11)

Thus, according to Eqs.(10) and (11), as the embedding parameter q increases from 0 to 1, φ(x; q)
varies continuously from the initial approximation y0(x) to the exact solution y(x). Such a kind of continuous
variation is called deformation in homotopy [31]. Due to Taylor’s theorem, φ(x; q) can be expanded in a power
series of q as follows:

φ(x; q) = y0(x) +
∞∑
m=1

ym(x)qm, (12)

where,

ym(x) =
1

m!

∂mφ(x; q)

∂qm
|q=0. (13)

Let the initial guess y0(x), the auxiliary linear parameter L, the nonzero auxiliary parameter ~ and the auxiliary
function H1(x) be properly chosen so that the power series (12) of φ(x; q) converges at q = 1, then, we have
under these assumptions the solution series,

y(x) = φ(x; 1) = y0(x) +
∞∑
m=1

ym(x). (14)
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we have the so-called zero-order deformation equation

(1 − q)L[φ(x; q) − y0(x)] = qŸH1(x)N[φ(x; q)],

when q = 0, the zero-order deformation (9) becomes
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From (12), we can write (9) as follows:

(1− q)L[φ(x; q)− y0(x)] = (1− q)L[
∞∑
m=1

ym(x)qm] (15)

= q~H1(x)N [φ(x; q)],

then,

L[
∞∑
m=1

ym(x)qm]− qL[
∞∑
m=1

ym(x)qm] = q~H1(x)N [φ(x; q)]. (16)

By differentiating (16) m times with respect to q, we obtain,

{L[
∞∑
m=1

ym(x)qm]− qL[
∞∑
m=1

ym(x)qm]}(m) = q~H1(x)N [φ(x; q)]
(m)

= m!L[ym(x)− ym−1(x)]

= ~H1(x)m
∂m−1N [φ(x; q)]

∂qm−1
|q=0.

Therefore,

L[ym(x)− χmym−1(x)] = ~H1(x)<m(−−−→ym−1(x)), (17)

where,

<m(−−−→ym−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (18)

and

χm =

{
0 m ≤ 1,

1 m > 1.

4. HOMOTOPY PERTURBATION METHOD (HPM)
The homotopy perturbation method first proposed by He [1]. To illustrate the basic idea of this method,

we consider the following nonlinear differential equation

A(y) − f(r) = 0, r ∈ Ω, (19)

under the boundary conditions

B

(
y,
∂y

∂n

)
= 0, r ∈ Γ, (20)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic function, Γ is the 
boundary of the domain Ω. In general, the operator A can be divided into two parts L and N , where L is linear, 
while N is nonlinear. (19) therefore can be rewritten as follows

L(y) +N(y)− f(r) = 0. (21)

By the homotopy technique (Liao 1992, 1997). We construct a homotopy v(r, p) : Ω × [0, 1] −→ R which
satisfies
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H(v, p) = (1− p)[L(v)− L(y0)] + p[A(v)− f(r)] = 0, p ∈ [0, 1]. (22)

or

H(v, p) = L(v)− L(y0) + pL(y0)] + p[N(v)− f(r)] = 0, (23)

where p ∈ [0, 1] is an embedding parameter, y0 is an initial approximation of (19) which satisfies the boundary
conditions. From (22), (23) we have

(24)H(v, 0) = L(v) − L(y0) = 0,
H(v, 1) = A(v) − f(r) = 0. (25)

The changing in the process of p from zero to unity is just that of v(r, p) from y0(r) to y(r).
In topology this is called deformation and L(v) − L(y0), and A(v) − f(r) are called homotopic. Now,
assume that the solution of Eqs. (22), (23) can be expressed as

(26)

The approximate solution of (19) can be obtained by Setting p = 1.

u = lim
p→1

v = v0 + v1 + v2 + · · · (27)

5. THE MAIN RESULTS
In this section, we shall give an uniqueness result of (1), with the condition (2) and prove it. Before

starting and proving the main results, we introduce the following hypotheses:

(A1) There exists a constant L∆ > 0 such that, for any y1, y2 ∈ C(J,R)

|∆(y1)−∆(y2)| ≤ L∆ |y1 − y2|

(A2) There exists a function Ψ∗ ∈ C(D,R+), the set of all positive function continuous on D = {(x, t) ∈
R× R : 0 ≤ t ≤ x ≤ 1} such that

Ψ∗ = sup
x,t∈[0,1]

∫ x
0
|Ψ(x, t)| dt <∞.

(A3) The two functions f,Θ : J → R are continuous.

Lemma 5..1 If y0(x) ∈ C(J,R), then y(x) ∈ C(J,R+) is a solution of the problem (1)− (2) iff y satisfying

y(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s)y(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1Θ(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ s

0

Ψ(s, τ)∆(y(τ))dτ

)
ds,

where y0 =
∑n−1
k=0 dk

xk

k! .

Our result is based on the Banach contraction principle.

Theorem 5..2 Assume that (A1), (A2) and (A3) hold. If(
‖f‖∞ + Ψ∗L∆

)
< 1. (28)

Then there exists a unique solution y(x) ∈ C(J) to (1) − (2).
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v = v0 + pv1 + p2v2 + · · ·

Γ(α + 1)
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Proof 5..3 By Lemma 5..1. we know that a function y is a solution to (1)− (2) iff y satisfies

y(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s)y(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1Θ(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ s

0

Ψ(s, τ)∆(y(τ))dτ

)
ds.

Let the operator T : C(J,R)→ C(J,R) be defined by

(Ty)(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s)y(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1Θ(s)ds+
1

Γ(α)

×
∫ x

0

(x− s)α−1

(∫ s

0

Ψ(s, τ)∆(y(τ))dτ

)
ds,

we can see that, If y ∈ C(J,R) is a fixed point of T , then y is a solution of (1)− (2).
Now we prove T has a fixed point y in C(J,R). For that, let y1, y2 ∈ C(J,R) and for any x ∈ [0, 1]

such that

y1(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s)y1(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1Θ(s)ds+
1

Γ(α)

×
∫ x

0

(x− s)α−1

(∫ s

0

Ψ(s, τ)∆(y1(τ))dτ

)
ds,

and,

y2(x) = y0 +
1

Γ(α)

∫ x

0

(x− s)α−1f(s)y2(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1Θ(s)ds+
1

Γ(α)

×
∫ x

0

(x− s)α−1

(∫ s

0

Ψ(s, τ)∆(y2(τ))dτ

)
ds.

Consequently, we get

|(Ty1)(x)− (Ty2)(x)|

≤ 1

Γ(α)

∫ x

0

(x− s)α−1 |f(s)| |y1(s)− y2(s)| ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
( ∫ s

0
|Ψ(s, τ)| |∆(y1(τ))−∆(y2(τ))| dτ

)
ds

≤
‖f‖∞

Γ(α+ 1)
|y1(x)− y2(x)|+ Ψ∗L∆

Γ(α+ 1)
|y1(x)− y2(x)|Γ(α+ 1) |y1(x)− y2(x)|

=

(
‖f‖∞ + Ψ∗L∆

Γ(α+ 1)

)
|y1(x)− y2(x)| .

From the inequality (28) we have

‖Ty1 − Ty2‖∞ ≤
(
‖f‖∞ + Ψ∗L∆

Γ(α+ 1)

)
‖y1 − y2‖∞ .

This means that T is contraction map. By the Banach contraction principle, we can conclude that T
has a unique fixed point y in C(J, R).

6. NUMERICAL EXAMPLE
In this section, we proposed a numerical solution for nonlinear fractional Volterra integro-differential 

equations by using the MHAM and MHPM, as shown in Tables 1-3 and Figure 1.
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Example 1. Consider the following fractional Volterra integro-differential equation with the
boundary conditions:

cDαy(x) = y(x) + x(1 + ex) + 3ex −
∫ x

0

y(t)dt, 3 < α ≤ 4, x ∈ [0, 1], (29)

with the boundary conditions:

y(0) = 1, y(1) = 1 + e,

y′′(0) = 2, y′′(1) = 3e. (30)

Therefore the exact solution is

y(x) = 1 + xex, for α = 4

Table 1. Numerical results of the example 1
x Exact MHAM MHPM
0.0 1.000000000 1.000000000 1.000000000
0.1 1.110517092 1.107047479 1.102647336
0.2 1.244280552 1.237721115 1.229286556
0.3 1.404957642 1.395985741 1.384226779
0.4 1.596729879 1.586238703 1.572164823
0.5 1.824360635 1.813384918 1.798234919
0.6 2.093271280 2.082918367 2.068063429
0.7 2.409626895 2.401010221 2.387829229
0.8 2.780432743 2.774603867 2.784330528
0.9 3.213642800 3.211517152 3.205058944
1.0 3.718281828 3.718552210 3.718281829

Table 2. Values of A and B for different values of α by MHAM
α = 4 α = 3.5

A 0.96461853025138 1.06172444793295
B 3.43572350417823 1.60468681403168

Table 3. Values of A and B for different values of α by MHPM
α = 4 α = 3.5

A 0.9200006577 0.9855569381
B 3.806600712 2.306799253

Figure 1. Numerical Results of the Example 1
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7. CONCLUSION
In this paper, new modifications of the homotopy perturbation method (HPM) and the homotopy

analysis method (HAM) are presented and applied to non-homogeneous fractional Volterra integro-differential
equations with boundary conditions. A comparative study between the new modified of homotopy perturbation
method (MHPM) and the new modified of homotopy analysis method (MHAM). For this purpose, we showed
that the MHAM is more rapid convergence than the MHPM.
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