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Abstract 
During the lifespan of electronic products, the output voltage and current fluctuate due to the 

random fluctuations of parameter values of circuit components and environmental noise. Extant methods 
of circuit designs, such as parameter sweep and sensitivity analysis, are hard to obtain global robust 
optimization of output characteristics. This paper proposes a SVR-based robust parameter design 
approach to reach global circuit optimization. First, the approach fits an empirical model of process 
responses by using SVR. Next, it introduces the fluctuations of controllable factor variations and noise 
factors into response model by probability density functions, and calculates process means and variances 
by integration. Finally, it obtains optimal parameter combination by model optimization. An empirical study 
of the robust design of an inductor-resistor series circuit is conducted. The results show that the proposed 
approach not only avoids the disadvantage of ignoring interactions between factors when using parameter 
sweep and sensitivity analysis, but also overcomes the shortcoming of only achieving non-continuous 
optimization by Taguchi method and the limitation of obtaining local optimization by DRSM, and therefore, 
enhances the robustness of the circuit outputs.  
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1. Introduction 

The parameter values of the circuit components randomly fluctuate over time during the 
lifespan of electronic products. The output characteristics of circuit, such as voltage and current, 
also fluctuate due to environmental noise. Therefore, the key to product design is to reduce 
these fluctuations and increase the stability of circuit. 

Traditional methods of circuit design include parameter sweep [1] and sensitivity 
analysis [2]. Parameter sweep examines the influence of the change of a specific component 
value on outputs by fixing the parameter values of other components. The method uses a one-
factor rotation design which needs more runs and cannot examine the interaction effects 
between components. Sensitivity analysis examines the stability of output voltage or current 
through the differential transformation of certain input features. However, neither of the methods 
takes into account the influence of simultaneous fluctuations of multiple component parameter 
values. Therefore, the output stability of circuit after using these optimization methods needs to 
be improved.  

In fact, how to select appropriate component parameter values which makes circuit 
output characteristics insensitive to component variations and environmental noise can be 
considered as a typical robust parameter design (RPD) problem. Moreover, the feature of the 
relationship between circuit inputs and outputs is complex nonlinearity, not only because the 
circuit consists of various components (e.g., resistor, capacitor, inductor, and power) that have 
very different electrical performance, but also because there are random fluctuations of the 
parameter values during the lifespan of electronic products. 

Traditional robust design methods have limited capability to deal with such complex 
processes. Taguchi method can optimize the process only at certain factor levels, but it fails to 
gain continuous optimization. Dual Response Surface Methodology (DRSM) is applicable to the 
optimization of the simple processes which can be fitted by second-order polynomials. Both 
methods cannot effectively deal with the influence of the random fluctuations of component 
parameter values on the outputs. 
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This paper proposes a Support Vector Regression (SVR) based RPD approach for 
circuit optimization. The approach uses the following steps to achieve the optimization of circuit 
component parameter values. Firstly, it establishes an empirical model of the complex 
relationship between circuit component parameter values and the outputs by using SVR. 
Secondly, it describes the fluctuations of component parameter values by using normal or 
uniform probability distributions, and describes the influence of component parameter value 
fluctuations and process noise on circuit outputs by using joint probability distributions. Finally, it 
finds the parameter values that minimize circuit output fluctuations by using parallel gradient 
descent method. In the following sections, the paper first reviews extant RPD approaches and 
gives a brief introduction of SVR theory, and then describes the algorithm steps of the 
approach. After that, the paper demonstrates the effectiveness of the approach by a case study 
of the optimization of inductor-resistor series circuit.  
 
 
2. Brief Introduction to Theories of RPD 
2.1. Taguchi Method 

It was Taguchi [3] who first introduced the concept of RPD. Taguchi method categorizes 
process parameters into controllable factors and noise factors. It increases the stability of 
processes by selecting appropriate controllable factor levels that make quality characteristics 
(i.e., “responses”) of process outputs insensitive to the variations of controllable factors and the 
influence of noise factors. Signal-to-Noise Ratio (SNR) analysis is one of the main methods to 
achieve RPD. The basic idea of this method is to (1) plan and run experiments by using inner-
outer array; (2) calculate SNR according to the quality characteristics; and (3) find the optimal 
controllable factor levels that minimize the fluctuations of the responses. SNR is calculated 
according to the goals of different types of quality characteristics. Taguchi method classifies 
quality characteristics into three types: the smaller-the-better (STB), the larger-the-better (LTB), 
and the nominal-the-best (NTB) characteristics. It uses SNR to reflect the robustness of 
responses, and search for the factor level combination that maximizes the SNR, thereby 
achieving RPD.  

It is relatively plain and convenience to select the optimal factor level combination by 
using SNR. But the method has many limitations as well. First, it requires information about the 
approximate range of factor levels in advance and needs many runs to obtain a satisfied 
solution [4]. Second, SNR loses a lot of information that is related to process features [5]. The 
third, it can optimize only at certain factor levels, which leads to a satisfied solution rather than 
an optimal solution. Therefore, many scholars and experts propose various approaches to 
improve RPD method among which the representative is the DRSM proposed by Vining and 
Myers [6].  
 
2.2. DRSM 

DRSM [7, 8] investigates process optimums step by step by sequentially adopting first-
order polynomial modeling and steepest ascent optimization, and then fits process mean and 
process variance models by using second-order polynomial in a relatively small range of the 
factors. After that, it obtains an optimal solution by minimizing the variance under the constraint 
of mean target. Unlike Taguchi method, DRSM successfully combines parameter design and 
regression analysis, and obtains regression model between responses and factors through 
experimental design. It can attain the continuous optimization of factor levels, and is the main 
method for RPD.  

DRSM [9], however, has its limitations when it is applied to RPD with complex 
processes. Firstly, second-order polynomials fail to fit the complex nonlinear relationship 
between factors and responses. Secondly, the result of optimization is sensitive to the initial 
values. It may obtain local rather than global optimization when inappropriate initial values are 
selected. The third, DRSM doesn’t consider the influence of factor variations on responses, 
therefore, is not a real robust parameter design. 
 
2.3. SVR 

SVR is a small-sample based approximate statistical learning approach proposed by 
Vapnik [10]. It can establish nonparametric models that meet the characteristics of process 
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under the constraint of small sample. It has been widely used to model complex processes [11-
13]. The basic principles of SVR are as follows: 

let nRx  and y R  denote the input variables  

Vector and output variable of a process; suppose that the function ( )y f x  is 

unknown, the task of model fitting is to use the data from the independent and identical 
distribution empirical sample S 

 

1 1 2 2{( , ), ( , ), ... , ( , )}l lS y y y x x x ， ,i iy y x x  (1) 

 
to find the optimum function 0( , )f x in the function set{ ( , )}f x  which minimizes the excepted 

risk of prediction: 
 

( ) ( , ( , )) ( , )R L y f dF y   x x  (2) 

 
where   is the generalized parameter, and ( , ( , ))L y f x  is the loss-function which defined as 

the   insensitive function: 
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If the relationship between input x and output y is onlinearity, x is first mapped onto a high linear 
dimensional feature space using nonlinear mapping function T(x), and then a linear model is 
obtained in the feature space: 

 
( , ) ( )f T b  x w w x . (4) 

 
Then SVR model fitting is formulated as the following optimization problem: 
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Where i , *
i is the non-negative slack variables and C is the penalty parameter.  

The dual problem of equation (6) is: 
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with the solution of  
 

*( , ) a a * T
1 1( , , , , )*

n na a a a . (7) 
 
In equation (7), ( , ')k x x = ( ) ( )T Tx x'  is the kernel 
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function which can reduce the complex of operation in the high dimension feature space after 
mapping. Finally, the SVR fitting model becomes 
 

*

1

*

1

*

1

( , ) ( ) ( )

( ) ( , )

( ) ( , )

n

i i i
i

n

i i i
i

n

j i i i
i

f b a a k b

a a k

b y a a k











       



 



   








x w x x x

w x x

x x
 (8)

 

 
 
3. SVR Based RPD 
3.1. Basic Ideas 

For RPD of complex processes, establishing the empirical models of process means 
and variances is one of the key steps. Specifically, the empirical models need to meet two 
requirements. First, the models should reflect the complex relationship between factors and 
responses in the whole range of factors. Second, the sample needed for modeling should be as 
small as possible to reduce the cost of optimization. Therefore, SVR models that are suitable for 
small-sample global modeling can be selected as the basic form of empirical models. Moreover, 
SVR models have analytic form which helps the consequent computing and optimizing. 
Therefore, using SVR for modeling has its natural advantage for robust design of circuit with 
random parameter variations and process noise. The characteristics of SVR enable us to adopt 
space filling designs such as uniform design [14] with large interval and LHS design. 
Consequently, not only the sample points selected can cover the whole feasible zone, but also 
the sample is relatively small. 

After modeling and sample point selecting approach are determined, the next step is to 
consider how to deal with the fluctuations of controllable factor variations and noise factors, both 
of which influence the response outputs. However, most of the existing studies lay their 
emphasis on the influence of noise factors. Little effort has been put to examine the influence of 
the variations of controllable factors [15, 16]. In fact, the fluctuations of controllable factor 
variations have certain statistical patterns (e.g., in a circuit, the resistance of a resistor normally 
or uniformly and randomly fluctuates around its nominal value), so we can use probability 
density functions (e.g., multi-dimensional uniform distribution and multi-dimensional normal 
distribution, etc.) to describe the fluctuations. In addition, the change of noise factors is typically 
normal distributed. Therefore, in modeling, we can first establish the single response models 
among process responses, controllable factors, and noise factors, and then introduce the 
fluctuations of controllable factor variations and noise factors into response models by 
probability density function, and calculate process means and variances by integration. The last 
step is to find multiple minimum points of process variances by using methods such as parallel 
gradient descent [17], and determine the optimal parameter combination according to the value 
of process means.  
 
3.2. Algorithm Steps of SVR Based RPD Approach 

Based on the theoretical analyses above, we propose the SVR-based RPD for circuit 
optimization as follows: 

Step 1: select the controllable factors  '1 2, , mx x xx  and noise factors 

 '1 2, , nz z zz  , then decide the range of each factor by prior knowledge of the process; 

   Step 2: run uniform design or uniform grid design experiments with single arrays of 
controllable factors and noise factors to get raw data, and then standardize the sample data as 
follows:  
 

    1 1 1, , , , , , , , ,l l l l l lS y y X Z y Y     x z x z x z
. (9) 
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Step 3: choose Gauss function as the kernel function and set appropriate parameters of 
C and  , and then fit the SVR model of process output 
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Step 4: set the probability density of controllable factor variations and noise factors 

according to prior knowledge.  
Specifically, assume the controllable factor variations follow the normal distribution, 

and let xpi denotes the variation of xi, then the probability density functions of the controllable 
factor variations turn into 
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Assume noise factors follow the normal distribution with the following probability 
density functions: 
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and assume the independence both among different controllable factors and 

between controllable factors and noise factors,  the mean, variance and mean square error 
(MSE) of the output y are denoted as 
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Step 5: minimize D(y) or MSE(y) by using the concurrent gradient descent algorithm 

or genetic algorithm to get the optimal levels of controllable factors and therefore reach the RPD 
of the process. 
 
 
4. Case Study 

In order to demonstrate the effectiveness of the approach we proposed above, a case 
study of the optimization of inductor-resistor series circuit is conducted in this section. Figure 1 
shows the circuit diagram, which includes an inductor L, a resistor R and AC power with voltage 
V and frequency f. 

 
 

 
 

Figure 1. Inductor-resistor series circuit 
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The relationship between the circuit output I and L, R, V, f follows 
 

 22 2 fLR

V
I


  (14) 

 
According to the prior knowledge, the controllable factors are x1 (L)and x2 (R), and 

the noise factors are z1(V) and z2(f), with the ranges 
1 2[2mH,6mH], [9 ,11 ]x x    ，

1 2[95V,105V], [45Hz,55Hz]z z  , All the factors are standardized into [-1,1] before 

optimization. 
The goal of the circuit optimization is to reach the mean value of I by 10A, and 

meanwhile, minimize the fluctuation of I caused by the variations of x1, x2, and z1and z2. 
Firstly, we run 100 times uniform design experiments to get the sample set of S, and 

then fit the SVR model according to step 3 in section 3.2:  
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where y is the output characteristic denotes as I. 

Secondly, we assume that the distribution of variation of x1 , x2,which are denoted by 
xp1 and xp2,  follow the normal distribution as 
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and the distribution of z1 , z2 follow the normal distribution as 
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Then we get E(y), D(y) and MSE as follows 
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Thirdly, after integration, we get the mesh plot of the relationship of E(y), D(y) and 

MSE, shown in Figure 2. 
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Figure 2. Surface of E(y), D(y) and MSE 
 
 

As can be seen from Figure 2, within the range of controllable factors, the varieties of 
E(y), D(y) and MSE are typically complex, especially for MSE,  who has several local minimum. 
If we optimize the circuit by using DRSM, it will fall into a certain local optimum inevitably. While 
by using the proposed approach, all the local optimum can be reached through parallel gradient 
search (as shown in Table 1), hence we can get the global optimum consequentially. 
 
 

Table 1. Minimum of MSE with corresponding E(y), D(y), x1, and x2 
x1 x2 E(y) D(y) MSE 

0.7895 -0.2632 9.9429 0.000134 0.028916 
0.8947 -0.3684 10.0054 0.000239 0.027638 
0.6842 -0.1579 9.8688 0.003216 0.035053 
0.1579 -0.2632 10.1868 0.002748 0.037414 

 
 

Table 1 shows that MSE has several local optimums, the global optimum of which is 
0.027638, where the controllable factors x1=0.8974 and x2=-0.3684. After mapping the 
controllable factors into their initial ranges, we get the optimal values of the inductor-resistor 
series circuit: L=5.7894mH, R=9.6316Ω, and the corresponding I =10.0054A .  
 
 
5. Conclusion 

This paper proposes a SVR based RPD approach for the robust parameter design of 
circuit. The approach overcomes the shortcoming of ignoring interactions between factors in 
parameter sweep and sensitivity analysis methods, avoids the limitation of failure to achieve 
continuous optimization by using Taguchi method, and prevents to obtain local optimization by 
using DRSM. The paper describes detailed application steps of the approach, and takes into 
account the influence of input variations on responses, which make the experiments more 
realistic and the optimization steps more reasonable. The results of the case study also 
demonstrate the applicability and the effectiveness of the approach in circuit optimization.  
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