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 In this paper, the problem of finding local extrema in grayscale images is 

considered. The known non-maximum suppression algorithms provide high 
speed, but only single-pixel extrema are extracted, skipping regions formed 
by multi-pixel extrema. Morphological algorithms allow to extract all 
extrema but its maxima and minima are processed separately with high 
computational complexity by iterative processing based on image 
reconstruction using image morphological dilation and erosion. In this paper 
a new fast efficient non-maximum suppression algorithm based on image 
segmentation and border analysis is proposed. The proposed algorithm 
considers homogeneous areas, which are formed by multi-pixel extrema and 

are the local maxima or minima in relation to adjacent areas, eliminating 
iterative processing of non-extreme pixels and assigning label numbers to 
local extrema during their search. The proposed algorithm allowed to 
increase the accuracy of local extremum extraction in comparison with 
known non-maximum suppression algorithms and reduce the computational 
complexity and the use of RAM in comparison with the morphological 
algorithms. 
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1. INTRODUCTION  
Non-Maximum Suppression (NMS) is the task of finding all local maxima in an image. The term 

„non-maximum suppression‟ is first appeared in an edge detection context as a method to reduce thick edge 

responses to thin lines [1]. This type of directional NMS operates one dimensionally (1-D) perpendicular to 

the edge. This term is extended to isotropic NMS to locate two-dimensional (2-D) feature points from an 

image [2]. The feature points are selected as local maxima of a corner image over some neighborhood.  

The NMS approach to corner detection was subsequently adopted by many interest point detectors [3-5]. 

Image processing often requires the determination of initial elements, which can be local 2-D 

extrema (local maxima and local minima). To search for local extrema, some non-maximum suppression 

algorithms [6-11] and morphological algorithms [12] are used. In which, the search for extrema is computed 

within small blocks (masks), usually     or               pixels in size. Such algorithms have low 
computational complexity, but they extract local extrema by iterative processing (local single-pixel maxima 

and local single-pixel minima are extracted separately), skip multi-pixel extrema or extreme regions  

(for a homogeneous region consisting of several adjacent pixels with the same values, none of the pixels in 

this region is detected as a local extremum). 

The morphological algorithm is used for the extraction of local maxima and minima in an image by 

image reconstruction based on dilatation and erosion operations. It gives accurate results compared to known 
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non-maximum suppression algorithms, and also it allows to extract both single-pixel extrema and extreme 

regions. However, the morphological algorithm has high computational complexity, which is associated with 

separate processing of maxima and minima, as well as iterative processing of the neighborhoods of all pixels.  

Many image processing tasks require the determination of initial elements for the search of which 

algorithms can be used based on the Laplace operator [13] and the Gaussian Laplacian (LoG) [14];  

Hessian determinant (DoH) [13, 15]; watershed [16, 17]; iterative binarization of regions by a variable 

threshold [18]. Image elements extracted using these algorithms are individual pixels, contours, or spots, 

which are characteristic elements, but not necessarily local extrema. Local extrema are used as base points for 

segmentation [19] and texture analysis of images [20]. The aim of this work is to develop a new algorithm for 

extracting local extrema in grayscale images with low computational complexity, high accuracy and less cost 
of RAM. 

 

 

2. RESEARCH METHOD 

2.1.  Previous algorithms 

A straightforward approach to NMS over a rectangular neighborhood is described in Figure 1(a). 

The input image pixels are visited in a raster scan order (from left to right, then from top to bottom).  

Each visited pixel is compared to other pixels in its neighborhood also in a raster scan order. The central 

pixel c is a non-maximum if a larger or equal neighbor is found. The algorithm then skips to the next pixel in 

the scan line. The straightforward method is simple to implement but it can take a long time to process an 

image. On average, however, the straightforward method requires      comparisons per pixel. 
The complexity of a raster scan algorithm can be significantly reduced by visiting the neighboring 

pixels in a different order. An algorithm with a local spiral order is presented in [10] as shown in Figure 1(b). 

By comparing with closer neighbors first, the central pixel is guaranteed to be a    -neighborhood local 

maximum before it is tested against a larger neighborhood. 

 

 

   
(a) (b) (c) 

 
Figure 1. Previous solutions for 2-D non-maximum suppression (5×5 neighborhood),  

Raster scan order [9, 11], (b) Spiral order [10], (c) Block partitioning [9, 11] 

 

 

Because the number of     local maxima in an image is usually small (≤ 25% of the total number 

of pixels), the spiral order algorithm quickly finds any non-maximum and skips to the next pixel. The number 

of               local maxima also decreases rapidly as the neighborhood size increases. As a result, 

the computational complexity of this algorithm is roughly constant (≤ 5 comparisons per pixel to detect a 

    non-maximum) of the irrespective neighborhood size. 
In [11], the above algorithms are extended to reduce the number of comparisons to fewer than two 

comparisons per pixel. The algorithm first searches for 1-D local maxima along the scan line. Each 1-D 

maximum is then compared against its neighbors in adjacent rows. A buffer of two binary masks is kept for a 

current and a next scan line. As a new central pixel is processed, its future neighbors are masked out if they 

are smaller than the central pixel. Masked pixels will be skipped for the next processing. This 1-D non 

maximum suppression algorithm therefore requires one comparison per pixel as shown in Figure 2. 

 

 

  
(a) (b) 

 

Figure 2. 3-neighborhood non-maximum suppression and 3×3-neighborhood scan order,  
(a) 1D non-maximum suppression, (b) 3×3 scan order 
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The scan-line algorithm for    –neighborhoods can be extended to handle               – 

neighborhoods for    . First,       – neighborhood maxima on the current scan-line are located.  

These 1-D maxima serve as candidates for the 2-D maxima. Each candidate is then compared against its 

             – neighborhood in a spiral order similar to that of Forstner‟s method [10]. In this case, 

the neighbors on the same scan-line have already been compared and can therefore be skipped. This results in 

a maximum of             neighbors to be compared per candidate. In practice, the average number of 
comparisons per candidate is much smaller than the spiral traverse order as shown in Figure 3(c). 

 

 

   
(a) (b) (c) 

 

Figure 3. Scan-line algorithm for               non-maximum suppression (   ) [11], 

(a) 1D peak and trough detection, (b) 1D non-maximum suppression, (c) Spiral traverse 

 
 

From the above NMS algorithms, the extended algorithm to find local maximum and local 

minimum can be described by the following: 

 

         {
                             

                             
  (1) 

 

         {
                              

                             
 (2) 

 

where       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      {      }      {      }                 . As a result of 

combining the matrices      and     , a matrix of local extrema E is obtained, the values of the elements of 

which are calculated using the expression: 

 

                              (3) 

 

Regional extrema are detected better by morphological reconstruction by dilation and erosion [12], 

in which a regional minimum M of an image f at elevation t is a connected component of pixels with  

the value t whose external boundary pixels have a value strictly greater than t. M is a regional minimum at 

level t   M is connected and 
 

{
            

                      
 (4) 

 

Similarly, a regional maximum M of an image f at elevation t is a connected component of pixels 

with the value t whose external boundary pixels have a value strictly less than t. M is a regional maximum at 

level t   M is connected and 

 

{
            

                      
 (5) 

 
The regional extrema of an image are defined as the union of its regional minima and maxima. 

According to (4), the set of all maxima of an image f at level t corresponds to the connected components of 

the cross-section of f at level t that are not connected to any component of the cross-section of f at level t+1. 

They are therefore not reconstructed by the morphological reconstruction by dilation        from         . 

The regional maxima of an image f at level t can be written by the following: 
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                                         . (6) 

The set of all maxima is defined by considering the union of the maxima obtained at each level t: 

 

           {              
           }. (7) 

 

Since                   and                      for     , the set in (7) can be 

replaced with an algebraic difference and the union by a summation. The summation is then distributed and 

the threshold superposition principle gives: 

 

            
         (8) 

 

If the image data type does not support negative values, the following equivalent definition must  

be considered: 

 

              
     (9) 

 

Similarly, the regional minima of an image f at level t are denoted by                    
                       

                  . The set of all regional minima is denoted by RMIN and 

defined by threshold superposition: 

 

          
           (10) 

 

From (9) and (10) the final morphological algorithm to find all local extrema is shown in Figure 4. 

 
 

Mask f

Marker1 1f 

Recon1 Marker1

Recon1_old Recon1

Grayscale dilatation by a 

structuring element(SE) 3x3 pixels

index1 Recon1 > Mask

Recon1(index1) Mask(index1)

Recon1 Recon1_old



Marker2 1f 

Recon2 Marker2

Recon2_old Recon2

Recon2 (Recon2, SE)imrode

index2 Recon2 < Mask

Recon2(index2) Mask(index2)

Recon2 Recon2_old

No No

Yes Yes

*( 1)

RMAX  - Recon1f RMIN Recon2 - f

E RMAX + RMIN

Recon1 (Recon1, SE)imdilate

Grayscale erosion by a structuring 

element(SE) 3x3 pixels

Begin

End  
 

Figure 4. Finding regional extrema by morphology using matlab‟s built-in functions  
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From (1) and (3) the main disadvantages of block algorithms for isolating local extrema are the following: 

a) Redundancy of processing. The independent formation of matrices by (1) also leads to redundancy of 

processing, since the matrix pixels are re-processed when the matrix is formed to find the local 

minimum. 

b) Skipping multi-pixel extrema. In (1) it is shown that if a region consisting of several adjacent pixels 

with the same values is a local maximum in the image, none of these pixels in this region is detected as 

a local maximum. The same is true for local minima by (2). The number and area of such regions grow 

during quantization, filtering, and restoration of images after lossy compression. In such cases,  
skipping multi-pixel extrema leads to incomplete image segmentation, errors in detection, localization, 

and parameterization of objects. 

c) The need for additional processing of the resulting matrix to assign label numbers to local extrema. 

From (4) to (10) and Figure 4, the main disadvantages of morphological algorithms for isolating 

local extrema, leading to high computational complexity are the following: 

a) Separate processing of local maxima and local minima. 

b) Iterative processing of neighbourhoods of all pixels. 

c) The need for additional segmentation for assigning label numbers to extreme regions. 

 

2.2.   Mathematical model and proposed algorithm 

To eliminate the above disadvantages a new fast efficient non-maximum suppression algorithm 

(ENMS – Efficient Non-Maximum Suppression) to extract all local extrema in grayscale images with low 
computational complexity and high accuracy is proposed. The essence of the algorithm consists in scanning 

the image to search for non-segmented pixels, using them as starting points for growing of homogeneous 

regions and comparing the values of their boundary pixels with the values of the corresponding pixels of 

adjacent segments: the region is a local maximum (or minimum) if the values of all its boundary pixels are 

greater (or less) values of all adjacent pixels by the following: 

 

       

{
 
 

 
 

                       

 (                        ) 

                      

 (                        ) 

            

     (11) 

 

where        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,           – the number of current extreme region      ,    – the total 

number of extreme regions. In (11) the values of the elements        of the matrix E of local extrema 

indicate that the corresponding pixels of the image belong to the maximum (   , minimum (    ,  

or non-extremum (  . 

The proposed algorithm based on segmentation and border analysis consists of the following steps 

[21, 22]: 

Step 1. Buffering the original image        and obtaining its size. 

Step 2. Formation of zero matrix of segmentation          and matrix of extrema        having the same 
size as the original image. 

Step 3. Formation of two stacks   and   for temporary storage of pixel coordinates during processing as 

shown in Figure 5(b). 

Step 4. Setting initial values for the counter of segments   , the counter of extrema    and  

the pointer of region growing   . 

Step 5. Beginning of the segmentation loop. A selection of the current pixel of the original image and the 

corresponding element of the segmentation matrix   . If the current element of the segmentation matrix is 

zero (i.e., the current image pixel has not yet been segmented), then the coordinates of the current image 

pixel are entered in the   and   stacks, the values of the segment counter and stack pointer are increased by 

one:            ,            ; the current element of the segmentation matrix    is assigned the 

value   . 

Step 6. Region growing loop. Check stacks   and   for the temporary storage of coordinates. If the stack is not 

empty, the following operations are performed: extracting the current pixel coordinates from the   and   stacks; 

decreasing stack pointer per unit (        –   ); a selection of eight pixels of the original image adjacent to 

the current pixel as shown in Figure 5(a) and (c); loading on the stack of coordinates of adjacent pixels whose 

values coincide with the current pixel, with a corresponding increment in the value of the stack pointer; 

assigning elements of the segmentation matrix    corresponding to adjacent pixels whose values match the 

current pixel to    values. Continue processing the stack until      . 
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Step 7. Non-extremum suppression. Comparing the values of their boundary pixels of current region (step 6) 

with the values of the corresponding pixels of adjacent segments: the region is a local maximum  

(or minimum) if the values of all its boundary pixels are greater (or less) values of all adjacent pixels.  

Then, the value of the extreme counter is increased by one             and elements of the matrix   are 

assigned to label    as in (11). 

Step 8. Go to the beginning of the segmentation loop (step 5) if not all pixels of the image are processed. 

As a result of this algorithm, a matrix of extrema is formed, the value of each element of which indicates the 

label of the extrema or its absence. This data is used for further image processing. 

 

 

   
(a) (b) (c) 

 

Figure 5. Region growing process for finding local extrema, (a) Extending mask in raster scan order,  

(b) Stacks of coordinates for temporary storages, (c) The matching of pixels in the original image and 

segmentation matrix 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Experiment results  

The proposed algorithm ENMS is compared with some other known algorithms: the straightforward 

[9, 11], the spiral scan order [10], scanline3×3 [11] and the gray-scale morphology algorithm [12]. Besides, 
the Matlab‟s built-in functions imregionalmax, imregionalmin, imdilate and imerode were used for  

the morphology implementation using Matlab ®Image Processing Toolbox (R2015a). 

Six gray-scale images were used in this experiment: worst and best are 256×256 images of worst 

and best-case scenarios for the straightforward algorithm; noise is a 256×256 image of uniformly distributed 

noise; 256×256, 512×512 and 1024×1024 refer respectively to Harris corner [3] images of the Brain,  

Lena and City square image of the corresponding size as shown in Figure 6.  

 

 

   
(a) 

 

(b) (c) 

   
(d) (e) (f) 

 
Figure 6. Test grayscale images, (a) Worst case, (b) Best case, (c) Random, (d) Brain, (e) Lena, (f) City 
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The number of operations per pixel and the average runtime over 10 executions were recorded for 

each test image on an Intel 3.2 GHz system with 6 GB of RAM, the result of which is shown in Figure 7, 

Figure 8, Figure 9, and Table 1. The execution time shown in Figure 7(b) is generally in agreement with the 

algorithm complexity in Figure 7(a). On average, our method runs at a speed of 0.85µs per pixel. This is 1.9 

times faster than the morphology method. Besides, the morphology method is only faster than ours in its 

random scenario.  

Moreover, our algorithm implemented in pure Matlab code is almost faster than Matlab‟s built-in 

functions imdilate and imerode written in C++. The execution time of our algorithm is quite stable over  
a wide range of image contents and sizes. It is also independent of the number of detected local extrema.  

The proposed algorithm can run faster for finding local extrema in low-frequency images as shown in Figure 6(d). 

When using computing platforms Intel Core i3 3.1GHz, 6GB of RAM, Windows7, Matlab2015a 

(IWM platform), Intel Core i3 3.1GHz, 6GB of RAM, Windows7, Open CV 2.x, C ++ (IWC platform), 

Raspberry Pi 3, ARM-A53, Linux, Open CV 2.x, C ++ (RLC platform in Figure 10) the algorithm ENMS in 

comparison with Scanline3x3 algorithm requires 3.3, 2.9, 3.4 times more processing time and 5.8 times more 

use of RAM, respectively. However, implementation of the ENMS algorithm on IWM and IWC platforms,  

as compared with the implementation of the morphological algorithm, requires 1.9, 1.7 times less processing 

time and 2.1 times less use of RAM, respectively. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Comparison of different algorithms for 3×3 non-maximum suppression,  

(a) Number of operations per pixel, (b) Computation time per pixel 

 

 

 
 

Figure 8. User interfaces of ENMS algorithms using matlab 2015b 
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(a) (b) 

 
Figure 9. Example of getting segmented extreme images, 

(a) Lena‟s segmented image, (b) Brain‟s segmented image 

 
Figure 10. Implementation on raspberry Pi 3 

model B 

 

 

Table 1. Result of searching for local extrema 

Image Algorithm 
Extrema 

Total Pixels 

Worst case 

(256×256) 

Straightforward [9] 

0 0 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
2 1024 

ENMS (proposed) 

Best case 

(256×256) 

Straightforward [9] 

0 0 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
2 1024 

ENMS (proposed) 

Random 

(256×256) 

Straightforward [9] 

6069 6069 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
6498 6704 

ENMS (proposed) 

Brain 

(256×256) 

Straightforward [9] 

2392 2392 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
3197 20729 

ENMS (proposed) 

Lena 

(512×512) 

Straightforward [9] 

24826 24826 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
28581 33612 

ENMS (proposed) 

City 

(1024×1024) 

Straightforward [9] 

23872 23872 Spiral scan order at [10] 

Scanline3×3 at [11] 

Morphology at [12] 
37995 58399 

ENMS (proposed) 

 

 

3.2.  Extentions and applications 

The ENMS algorithm can be used to find distinctive feature points in an image. To improve  

the repeatability of a detected corner across multiple images, the corner is often selected as a local extremum 
whose corners is significantly higher (or lower) than the close-by second highest (or lowest) peak [4, 23]. 

For some applications such as multi-view image matching, an evenly distributed set of interest 

points for matching is desirable. An oversupplied set of ENMS point features can be given to an adaptive 

non-extreme suppression process [24, 25], which reduces cluttered corners to improve their spatial 

distribution. Moreover, the ENMS algorithm can be used to video denoising by detecting extreme points in a 

video frame, aligning these points to estimate global shift, and average aligned video frames are used to 

improve Signal-to-Noise Ratio [11]. 

 

 

4. CONCLUSION  

A mathematical model and a new fast efficient NMS algorithm to find all extrema in low-frequency 
images are proposed. The proposed algorithm ENMS, as well as the morphological algorithm, allows to 
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detect all single-pixel local extrema and extreme regions consisting of pixels with the same values. 

Moreover, the proposed algorithm, in comparison with the morphological algorithm, requires less than  

1.7-2.1 times depending on the computing platform with averaging over image types in time and 2.1 times in 

use of RAM. For future work, the proposed algorithm ENMS can be used for image segmentation based on 

region growing. Moreover, the local extrema could be used to find the feature points in image recognition 

and image matching. 
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