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 Fifth-generation (5G) wireless networks that use the MM−W hold a great 

promise to revolutionize wireless industry. However, the difficulty in 
generating and transmitting these high‐frequency signals in the electrical-

domain due to bandwidth limitation of electronic components, and high 
absorption loss limits current applications. Consequently, ptical generation 
and transmission of MM-W signals are a viable option. In this paper, a 
comparative study is carried out on three electro-optical upconversion (EOU) 
techniques to generate 60-GHz MM-W signal, namely 4-tupling, 6-tupling 
and 8-tupling. The paper briefly describes the three techniques and analyses 
the optical harmonic distortion suppression ratio (OHDSR) and electrical 
spurious suppression ratio (ESSR) generated by each one of the techniques. 

OHDSR and ESSR have been compared to show the trade-off between the 
techniques. In addition, the paper compares the implementation of non−ideal 
phase shifting on OHDSR for the three EOU techniques. Finally, the 
performance of the three EOU techniques after transmission over optical 
fiber is evaluated by quality factor (Q-factor) and eye pattern test. The results 
of the simulation illustrate well the benefits of the performed study and 
confirm that the 4-tupling constitutes a cost-effective technique to generate 
MM-W signals. 
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1. INTRODUCTION 
Wireless industry is moving toward the 5G NR (New Radio) technology to provide unprecedented 7 

Gigabit−per−second throughput to a mobile device. One way to enable 5G is to click on unused new bands at 

the top of the radio spectrum. These high bands are known as MM−W and have been recently been opened 

up by regulators for licensing [1]. MM−W electrical generation and transmission look troublesome process 

since MM−W signals are susceptible to interference and usually need to maintain line-of-sight transmission 

to work [2]. Besides, MM−W signals cannot easily move through buildings or obstacles and they can be 

absorbed by leaves and rain [3]. Hence optical MM−W generation and R−O−F transportation techniques 

were proposed. The optical MM−W generation techniques can be broken down into optical heterodyne 

detection (OHD) [4-7] and EOU techniques [8-14]. EOU gained a lot of attention because of its stability, 

flexibility and higher modulation bandwidth. EOU is a technique based optical frequency−multiplication 

wherein high−order optical harmonics are created by using a laser diode with an external modulator, such as 
Mach–Zehnder modulator (MZM) driven by a sinusoidal radio frequency (RF) signal. Compared with  
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the OHD technique, EOU can generate a high−purity optical MM−W signals without the use of complex 

mechanisms for phase noise repression [15].  

Several different EOU techniques have been recently proposed with various 

frequency−multiplication such as 4−, 6−, 8−, 12−, 16− and 24-tupling. Author [16] proposes a frequency 

24−tupling MM−W generation technique based on two integrated MZM (IMZMs). Authors [17, 18] propose 

16−tupling technique using two cascaded MZMs and dual parallel MZMs. Author [19] has proposed 

12−tupling technique. This technique is based on based on two cascaded dual-parallel MZMs. MM−W 

generation with higher frequency multiplication factors, i.e. 24, 16 and 12, plays a significant role in reducing 
requirements for high−frequency RF LOs at the switching center. However, complex circuits and higher 

modulation index are needed. The higher modulation index will has a low conversion efficiency. 

Furthermore, ESSR and OHDSR are low [20]. The present paper is focusing on EOU techniques for optical 

generation and transmission of MM−W signals. A comparative study is carried out between three different 

EOU techniques. The study aims at showing strengths and weaknesses of each EOU technique and 

evaluating each technique in terms of OHDSR and ESSR. As well as in terms of the influence of non-ideal 

phase shifting. The organization of this paper is as follows; Section 2 gives a brief description of the three 

selected EOU techniques. Section 3 details the simulation results and discussions. Subsequently, Section 4 

concludes the paper. 

 

 

2. TUPLING−TECHNIQUES 

2.1.   4−Tupling technique 

This frequency−multiplication technique is based on two parallel dual−drive MZMs to generate 

high−quality optical carrier suppression (OCS) MM−W signal. The OCS based frequency−multiplication 

improve R−O−F transmission systems due to its dispersion tolerance [21]. Figure 1 shows the schematic 

diagram for this technique [22]. 

 

 

 
 

Figure 1. Schematic diagram of the 4-tupling technique [22] 

 

 
The generated optical signal can be written as [22] 

 

  ( 2 )

2( ) 2 . c RFi
E t J m e

 
  (1) 

 

Only 2nd −order optical carriers are obtained. where c, RF are the frequency of the optical signal 
and electrical driving signal and J2 is the first kind Bessel function of the 2nd −order. OHDSR is  

the power−level difference between the main optical carrier and unwanted optical harmonics. The equation 

of OHDSR can be derived using (1): 

 

Harmonic suppression=10 log10 [(Numerator/Denominator)]2 (2) 

 

Simplifying the numerator of (2), yield 

2

22J  

Simplifying the denominator of (2), yield 
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6

22J  

 

Harmonic suppression=42.01 dB (3) 

 

ESSR is the power−level difference between the required electrical MM−W signal and spurious 

MM−W signal. The equation of ESSR for this technique is given by: 

 

Harmonic suppression=20 log10 [(Numerator/Denominator)] (4) 

 

Simplifying the numerator of (4), yield 
2

6 2 24 2J J J   

Simplifying the denominator of (4), yield 

6 24 .J J
 

 

Harmonic suppression=36.1 dB (5) 

 

By using this technique, an OHDSR more than 42 dB and an ESSR more than 36 dB are attained at 
a modulation index m=2.404. 

 

2.2.   6−Tupling technique 

A 6−tupling technique that can generate a 60−GHz MM−W signal using an IMZMs was developed 

by Shi et al. Figure 2 shows the schematic diagram for this technique [23]. The technique uses three 

sub−MZMs. The electrical phase shift between the two RF drive signals of the two sub−MZMs is =144O. 
 

 

 
 

Figure 2. Schematic diagram of the 6-tupling technique [23] 
 

 

The generated optical signal can be written as [23] 

 

  ( 3 )

3( ) 2 . c RFi
E t J m e

 
  (6) 

 

Only 3rd −order optical carriers are obtained. The equation for harmonic suppression can be derived 

using (6): 

 

Harmonic suppression=10 log10 [(Numerator/Denominator)]2 (7) 

 

Simplifying the numerator of (7), yield [23] 

3( )J m
 

Simplifying the denominator of (7), yield [23] 

7 ( )J m
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Harmonic suppression=31 dB (8) 

 

ESSR is the power−level difference between the required electrical signal and spurious signal.  

The equation of ESSR for this technique is given by 

 

Harmonic suppression=20 log10 [(Numerator/Denominator)] (9) 

 
Simplifying the numerator of (9), yield [23] 

3( )J m
 

Simplifying the denominator of (9), yield [23] 

72 ( )J m
 

 

Harmonic suppression=25 dB (10) 

 

Utilizing this technique, an OHDSR more than 30 dB and an ESSR more than 25 dB are obtained.  

A modulation index (m=3.831) is required to drive the IMZM. 

 

2.3.   Eight−tupling technique 
An 8−tupling technique that can generate a MM−W signal using four nested MZMs was developed 

by Shang etal. Figure 3 shows the schematic diagram for this technique [24]. The technique comprise of two 

4−tupling systems. Each system is consisting of two cascaded MZMs with a 90O phase delay  
between RF signals. The generated optical signal is written as [24] 

 

  ( 4 )

4( ) 2 . c RFi
E t J m e

 
  (11) 

 

Only 4th −order optical carriers are obtained. The technique offers a high−quality optical and 

electrical generation, Optical harmonic suppression=44 dB and RF harmonic suppression=44 dB,  

at m=3.831. In addition, the system is not affected by the biased deviation for MZM, indicating a higher 

stability. Nevertheless, higher modulation index and complexity are the essential restrictions. 

 

 

 
 

Figure 3. Schematic diagram of the 8-tupling technique [24] 

 

 

3. SIMULATION RESULTS AND ANALYSIS 
The simulation system for B-T-B is set up for the three techniques by using “OptiSimTM 9.0”,  

to evaluate the values of OHDSR and ESSR. Figure 4 shows the simulated experimental setup for  

the 4−tupling technique, i.e. Figure 1. 

To evaluate the effect of the variation of phase shifting on harmonics−suppression for the three 

EOU techniques, the phase shift (PS) is varied from −9 O to 9 O, and its effect on harmonics−suppression is 
shown in Figure 5. For 4−tupling and 8−tupling techniques, the power ratio (OHDSR) is changed.  

The highest harmonics−suppression values occur at phase shifts near zero. Then the values decrease with 

increasing the phase shift deviation as shown in Figure 8. An harmonics−suppression of 25 dB and 21 dB can 
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be attained if the deviation is 9O. For 6−tupling technique, harmonics−suppression is more sensitive to phase 

difference deviation. However, for the three EOU techniques, considerable harmonics−suppression 

degradation occurs with phase shifting more 4O or −4O. 

 

 

 
 

Figure 4. Simulated Experimental setup of the 4−tupling MM−W generation technique 

 

 

 
 

Figure 5. Harmonics suppression Vs Δϕ 

 

 

To further evaluate the performance of each EOU technique studied, simulated electrical eye 
patterns are shown in Figure 6 for a transmission distance of 60 km. Attenuation, chromatic dispersion and 

nonlinear effect are all activated in accordance with industry standards. Figure 6a shows the simulated 

electrical eye pattern of the recovered baseband signal for the 4−tupling technique. The eye pattern outline 

remains open and clear although the optical MM−W signal is transmitted over 60 km. The Q−factor is 

approximately 5.8 as depicted in Figure 7a.  

Figure 6b shows the simulated electrical eye pattern for the 6−tupling technique. The eye pattern 

retains open and the pulse width of the demodulated data becomes broader. The pulse width becomes broader 

and broader with increasing fiber length and that the bit walk-off effect gradually becomes serious,  

especially at 65 km. The Q−factor is approximately 5.2 as depicted in Figure 7b. Figure 6c shows  

the simulated electrical eye pattern for the 8−tupling technique. The eye pattern closes and the performance 

becomes unacceptable at a distance of 60 km. The Q−factor is approximately 3.8 as depicted in Figure 7c. 
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The physical cause is the effect of bit walk−off [25]. As seen from Figures 6, recovered baseband signal for 

6− and 8−tupling techniques suffer from oscillations in RF power bigger than 4−tupling technique due to 

fiber nonlinear distortion and bit walk−off effect. 

 

 

   
(a) (b) (c) 

 

Figure 6. Simulated eye patterns at transmission distances of 60 km, (a) 4−tupling technique,  
(b) 6−tupling technique, (c) 8−tupling technique 

 

 

  
(a) (b) 

 
(c) 

 

Figure 7. Simulated Q−factor at transmission distances of 60 km, (a) 4−tupling technique, (b) 6−tupling 

technique, (c) 8−tupling technique 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Towards 5G millimeter−wave wireless networks: a comparative study on... (Nael A. Al-Shareefi) 

1477 

4. CONCLUSION 

This comparative study confirms that the 4−tupling constitutes a cost−effective technique to 

generate 60−GHz MM−W signal. By comparing OHDSR, ESSR, eye patterns and Q−factor values of three 

different EOU techniques, we realized that the 4−tupling technique can generate a stable MM−W signal with 

a lower modulation index than 6− and −8 tupling techniques. Moreover, MM−W signal can resist the fading 

caused by the variation of phase shifting. However, the 4−tupling technique is not adequate to minimize 

requirements on the electrical components for wireless applications at frequencies above 100−GHz. 

Frequency −6 and −8 tupling techniques can minimize the requirements significantly.  

Unfortunately, Frequency −6 and −8 tupling techniques techniques present two disadvantages: first,  

they require a higher modulation index. Second, MM−W signal suffer from oscillations in RF power due to 
fiber nonlinear distortion and bit walk−off effect. 
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