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 One of the solution in solving k mutual exclusion problem is the concept of k-

coterie. A k-coterie under a set S is a set of subsets of S or quorums such that 
any k + 1 quorums, there are at least two quorums intersect each other. The k 
mutual exclusion problern is the problem of managing processes in such a way 
that at most k processes can enter their critical sections simultaneously. 
Nondominated k-coteries are more resilient to network and site failures than 
doninated k-coteries; that is the availability and reliability of a distributed 
system is better if nondominated k-coteries are used. Algorithms to construct 
k-coteries have been proposed, unfortunately they have some restrictions, 

especially in constructing nondominated k-coteries. The restrictions are due to 
the combination of N, the number of nodes in a distributed system, and k, the 
number of processes allowed to enter their critical sections simultaneously. To 
solve this problem, this paper proposes an algorithm to construct 
nondominated k-coteries for all combination of N and k. 

Keywords: 

Coterie 

Mutual exclusion 

Nondominated 

Quorum  

Copyright © 2019 Institute of Advanced Engineering and Science.  
All rights reserved. 

Corresponding Author: 

Rikip Ginanjar, 
Faculty of Computing,  

President University, Indonesia. 

Email: rikipginanjar@president.ac.id 

 

 

1. INTRODUCTION  

A distributed system may have shared resources which must be accessed in a mutually exclusive way. 

If a set of k identical resources may be simultaneously accessed by processes, it is said that multiple entries to 

critical sections are allowed. The concept of a coterie introduced by Garcia-Molina and Barbara [1] can be 

extended to be used in the distributed multiple mutual exclusion problems [2-7]. If a shared resource allows up 

to k processes to enter critical sections, it is called the k-mutual exclusion problem. The distributed k-mutual 

exclusion problem is the problem of managing processes in a distributed system in such a way that at most k 

processes can enter their critical sections simultaneously. Several distributed k-mutual exclusion algorithms 

have been proposed [2, 8-23].  
For example, suppose that there are k servers that contain identical license resources that are shared 

by nodes in a distributed system. Each license resource may only be accessed by one node at a time, and each 

node may access at most one license resource at a time [2, 24-25]. In this situation, a mutual exclusion algorithm 

can be used to control access to the servers.  

Huang, Jiang, and Kuo [2] proposed the concept of a k-coterie, which is the extension of the concept 

of coterie introduced by Garcia-Molina and Barbara. The definition of a k-coterie proposed by Huang, Jiang, 

and Kuo satisfies two properties: intersection property and minimality property. Given a set of processes 

[nodes] S in the system, a k-coterie under S is a collection of subsets of S in which any k+1 subsets have a non-

empty intersection. This property is called the intersection property. The intersection property guarantees that 

at most k processes can enter their critical sections. The other property, minimality property, says that any two 

distinct quorums are not a subset of each other.  
Independently, Kakugawa, Fujita,Yamashita, and Ac [3] proposed the same concept of a k-coterie. 

The definition for a k-coterie given by Kakugawa et. al. is more restrictive. Three properties must be satisfied: 
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intersection property, minimality property, and non-intersection property. The non-intersection property 

assures that up to k processes can enter their critical sections. A subset of a k-coterie is called  a quorum.  

Garcia-Molina and Barbara [1] clasifled coteries into two categories: Dominated and Nondominated. 

Nondominated coteries are the most resilient coteries [24, 25]. Since the nondominated coteries are the most 

resilient, it is beneficial to find as general as possible an algorithm to constructing  k-coteries.  Some researchers 

have observed and analyzed the advantages of using nondominated coteries, such as [1, 16, 17, 20, 21]. 

 

 

2. RESEARCH METHOD 

A k-coterie C is a set of subsets (also called quorums) of an underlying set of nodes, such that in any 

collection of k+1 pairwise quorums there exists at least two quorums that intersect each other. This concept, 

introduced in two papers,  in [2] and [3], independently, is an extension of the concept of a coterie. Huang, 

Jiang, and Kuo [2] defined a set of C to be a k-coterie if it satisfies two properties: intersection and minimality 

properties. Intersection property assures that at most k processes can enter their critical sections. Minimlaity 

property says that there is no quorum in C which is a subset of the others. The second paper was written by 

Kakugawa, Fujita, Yamashita, and Ae  [3]. In the second paper, the definition of a k-coterie is more restrictive. 

A set C is said to be a k-coterie if it satisfies three properties: minimality, intersection, and non-intersection 

properties. First,  consider the definition of a k-coteries proposed in  [2]. 

 

Definition 1. k-coterie 

Let S be a set of N nodes in the system and let k be a positive natural number ( k  N ), respectively. 
Then a set of subsets C which satisfies the following two conditions is called a k-coterie under S: 

 

Intersection Property. 

For any k+1 set { Q1, Q2, ...,Qk+1}  C, there exist two elements Qi and Qj in C such that Qi  Qj 

 . 
 

Minimality Property. 

For any two distinct elements Qi and Qj in C, Qi  Qj. The element Q of C is called a quorum. 
In this part, a new class of k-coteries is introduced: proper k-coterie. A set C is called a proper k-

coterie when it satisfies three properties as proposed in [2] and [3]. The first two properties are exactly the 

same as in Definition 1. The third property is the non-intersection property. 

 

Definition 2. Proper k-coterie. 

A set C of subsets ( quorums ) is  said a proper k-coterie if it is a k-coterie and satisfies the non-

intersection property. 

 
Non-intersection Property. 

For any integer ℎ <  𝑘, if an h-set { Q1, Q2, ...,Qh}  C satisfies Qi  Qj  , for all 𝑖𝑗, 1  𝑖, 𝑗 ℎ, 

then there exists an element 𝑄𝐶, such that 𝑄𝑄𝑖 =  𝑓𝑜𝑟 𝑎𝑙𝑙  1  𝑖, 𝑗 ℎ. 
The non-intersection property guarantees that even if h ( < k) processes are in their critical section, 

another process can still enter its critical section. 

 

2.1.   Proposed Algorithm 

2.1.1 Motivation 

In this paper, an algorithm to construct  nondominated k-coteries for any combination of N (number 

of nodes in the system) and k (number of processes allowed to enter critical sections simultaneously) is 

proposed. Since the nondomnated coteries are the most resilient to network and node failures, it is beneficial 

to consider the construction algorithm producing nondominated k-coterie. The algorithm proposed works for 

every combination of N and k. By constructing nondominated k-coteries for any combination of N and k by 
this algorithm, the problems in the construction of coteries by the Cube, the Hypercube, and the Majk 

algorithms are solved for any value of N and k. However, the algorithm may not construct so-called symmetric 

coteries. 

The idea of this algorithm is to avoid some cases for which the Majk method cannot provide exactly 

a k-coterie. Moreover, this algorithm provides nondominated k-coteries for any combination of N and k.  The 

important thing of this algorithm is in reducing the number of votes for some nodes. 
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 2.1.2 Algorithm 

Let S = {a1 , a2, . . . , aN} be a set of N nodes in a distributed system where N is a non-negative 

integer. Let k be an integer, where 1 <  𝑘 <  𝑁, representing the number of processes that can enter to their 

critical sections simultaneously 

 

Algorithm.  

1. Set 𝑤 = ⌈
𝑁+1

𝑘+1
⌉ 

2. Set 𝑚 = (𝑘 + 1)𝑤 − (𝑁 + 1) 

3. Set 𝐶′ = {𝑄 𝑆| |𝑄| = 𝑤}  

4. Let E be a set of m elements of S. {e1. c2, . . . , ,cm}.  

5. Set 𝑃 = {𝑄𝜖𝐶′|𝐸 ∩ 𝑄 ≠  ∅} 

6. Set 𝑃′ = ∅ 

7. If 𝑚 ≤
𝑤−1

2
 then  

          𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚  

          𝑃′ = 𝑃′ ∪ {𝑄 𝑆 |  |𝐸 ∩ 𝑄 | = 𝑖, 𝑎𝑛𝑑 |𝑄| = 𝑤 − 1} 

8. 𝑒𝑙𝑠𝑒 (𝑚 >  
𝑤−1

2
)  

          (a) 𝑚𝑖𝑛 =  ⌊
𝑤−1

2
⌋ + 1 

          (b) 𝑃′ = 𝑃′ ∪ {𝑄 𝑆 |  |𝑄| = 𝑚𝑖𝑛} 

          (c) 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑚𝑖𝑛 − 1 

          𝑃′ = 𝑃′ ∪ {𝑄 𝑆 |  |𝐸 ∩ 𝑄 | = 𝑖, 𝑎𝑛𝑑 |𝑄| = 𝑤 − 1} 

9. 𝑆𝑒𝑡 𝐶 =  (𝐶’ —  𝑃) 𝑈 𝑃’.  
 

From the algorithm, quorums that contain exactly one element of a set  𝐸 =  {𝑒1, 𝑒2, . . . , 𝑒𝑚} 

constructed by the algorithm have the size (𝑤 −  1). The quorums that contain two elements of E have the size 

(𝑤 −  2). Generally speaking, the quorums that contain h elements of E have the size (𝑤 −  ℎ), where 1 <

 ℎ <  𝑚𝑖𝑛. There is an exception when w is odd, Since min  =  ⌊
w−1

2
⌋ + 1, then min =

w+1

2
 . We can see that 

w - min < min. In this case, where Q E, the quorums do not follow the above rule saying that quorums 

containing h elements of E have the size (𝑤 −  ℎ).  

Since 𝑚 =  (𝑘 +  1)𝑤 − (𝑁 +  1), it is easy to see that  m ≤  k. It is also easy to see that any 

collection of k pairwise disjoint ciuorums contains at least (𝑁 −  𝑚 +  1) nodes. Any k pairwise disjoint 

quorums contain exactly 𝑁 −  𝑤 +  1 elements of S (nodes) if all quorums forming it have size (𝑤 −
1) 𝑜𝑟 (𝑁 +  1) −  (𝑘 +  1 )𝑛, where n is an integer.  

To show how the algorithm works, take a look at an example for N= 6, and k = 2. After step 3, we get 

w = 3, m = 2, and C’ = {{1, 2,:3}, {1, 2, 4} , {1, 2. 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 

6}, {1, 5, 6), {2, 3. 4}, {2, 3, 5}, {2, 3, 6}, {2,4,5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}. {4, 5, 

6}}. 

Assume E = {1, 2}, then after step 8, we have P={{1,2,3}, {1,2,4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {l, 

3, 5}, {1, 3, 6), {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6},{2, 5, 6}} and 

P’ = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1. 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}}.  
Finally, we have a 2-coterie C, C = {{1, 2}, {l, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 

6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}}.  

It is easy to see that C is a 2-coterie and nondominated. It can also be seen that for any collection of 2 

pairwise disjoint quorums {Q1, Q2}, the number of elements (nodes) involved is between 4 (>  𝑁 −  𝑤 +  1) 

and 6 (<  𝑁). For 𝑁 =  5 and 𝑘 =  3, the algorithm produces  

C = {{1}, {2}, {3, 4}, {3, 5}, {4, 5}}.  

This set C is a 3-coterie and even nondominated. 

 

 

3. RESULTS AND ANALYSIS 
The objective of this analysis process is to prove that the proposed algorithm is correct and produces 

nondominated k-coteires. But before proffing the correctness of the algorithm, some properties should be 

introduced to lead to the conclusion that C is a k-coterie. After the correctness of the algorithm is proven, the 

algorithm has to be analysed to demostrate that this algorithm also produces nondominated coteries C, for any 

combination number of nodes and processes. 

Before we get to the conclusion that the proposed algorithm is correct and produces nondominated 

algorithm, there are some properties (Lemma) that are obtained from the algorithm. Since the idea of the 
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algorithm is to avoid most cases in which the Majk method produces dominated k-coterie and not-exactly k-

coterie by selecting in special elements, we have interesting properties of m.  

 

Lemma 1. m < k.  

Proof:  

Assume m > k. Since m and k are integers, let m = k + I +  , for  > 0. From algorithm in step 2, m = 
(k + 1)w - (N + 1), so we have  

 

𝑁 +  1 =  (𝑘 +  1)𝑤 −  𝑚  
 𝑁 + 1 =  (𝑘 + 1)𝑤 −  (𝑘 + 1 + )  

𝑁 + 1 =  (𝑘 +  1)(𝑤 − 1)  −   
𝑁 + 1 (𝑘 +  1)(𝑤 −  1)  
⌈(𝑁 + 1)/(𝑘 + 1)⌉ 𝑤 − 1  

This contradicts to  ⌈
𝑁+1

𝑘+1
⌉ =  𝑤 

 

Lemma 2. m(w - 1)  N  
Proof:  

 

  Since ⌈
𝑁+1

𝑘+1
⌉ =  𝑤, then  𝑚(𝑤 –  1)  < ⌈

𝑁+1

𝑘+1
⌉   or  

(𝑘 + 1)(𝑤 − 1)  <  𝑁 + 1 

 
(𝑘 + 1)(𝑤 − 1)  𝑁 

 
         𝑘(𝑤 − 1)  ≤  𝑁  
 

By Lemma 1, 𝑚(𝑤 −  1)  ≤  𝑁. This completes the proof.  
 

Lemma 3.  

Any collection of k pairwise disjoint quorums contains at least 𝑁 −  𝑤 + 1 elements. 

Proof:  

Let R = {Q1, Q2,. . . , Qk,) be a collection of k pairwise disjoint quorums. There are two cases to 

consider.  

 

1. if  
𝑁+1

𝑘+1
= 𝑤, where w is an integer. The number of elements is 𝑘𝑤 =  𝑁 − 𝑤 + 1.  

 

2. if 
𝑁+1

𝑘+1
= 𝑤 is not an integer. There are two cases to consider.  

 

 (a) |𝐸 ∩ (∪𝑖=1
𝑘 𝑄𝑖)|  =  𝑚. There are two possibilities.  

 There are m quorums in R that have size (w - 1). In other words, there are m quorums in R that contain 

exactly one element of E. The number of elements in R is  

    
𝑚(𝑤 − 1) + (𝑘 − 𝑚)𝑤 =  𝑘𝑤 − 𝑚  

                     =  𝑘𝑤 − (𝑘 + 1)𝑤 + (𝑁 + 1)   
                     

                =  𝑁 –  𝑤 +  1 

 

 There are some quorums in R that contain more than one element of E, or |𝑄𝑖 ∩ 𝐸 | >  1, where 𝑄𝑖 ∈ 𝑅 

Rand for some 1 ≤ 𝑖 ≤ 𝑘. Without loss of generality, assume there exists a qnorum 𝑄𝑖 ∈ 𝑅 

that|𝑄𝑖 ∩ 𝐸| = 𝑗, for 1 ≤ 𝑖 ≤ 𝑘, and 𝑗 ≥ 2. There are two cases:  

i. 𝑄𝑖𝐸. By the algorithm, |𝑄𝑖| = 𝑤 − 𝑗. Since there are k pairwise disjoint quorums in R, then there 

exists j - 1 quorums in R that have size w. The number of elements included in the j quorums equals to  

w - j + (j - 1 )w = j(w - 1). The average size of these quorums is w - 1.  

ii. 𝑄  𝐸. If 𝑚𝑖𝑛 =  𝑤 −  𝑗 or if w is even, then this case is the same as previous one. If 𝑚𝑖𝑛 =  𝑤 −
 𝑗 +  1 or if w is odd , there exists j quorums in R that have size w. The number elements included in 

the j + 1 quorums is 𝑤 −  𝑗 +  𝐼 + 𝑗(𝑤)  =  𝑤 (𝑗 +  1)  −  (𝑗 +  1)  +  2 and the average size of the 

j + 1 quorulns is larger than w – 1. 
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Since any quorum 𝑄 ∈ 𝑅 such that |𝑄 ∪ 𝐸 | =  𝑗, 𝑜𝑟 𝑗 − 1 or j quorums that have size w. then the 

average size of m qurums in R containing m elements of E at least 𝑤 −  1. Therefore, by previous 

proof, we have |∪𝑖=1
𝑘 𝑄𝑖| > 𝑁 − 𝑤 + 1.  

 (b) |𝐸 ∩ (𝑈𝑖=1
𝑘  𝑄𝑖)|  =  𝑚 −  𝑗. There are two possibilities.  

 𝑄𝑖 𝐸, for all 1 <  𝑖 <  𝑘. By previous proof, the average size of the 𝑚 −  𝑗 quorums is 𝑤 −  1. 

Consequently, the number of elements is (𝑚 − 𝑗)(𝑤 − 1) +  (𝑘 − 𝑚 + 𝑗)𝑤 = 𝑘𝑤 −  𝑚 + 𝑗 =  𝑁 −
 𝑤 + 𝑗 +  1•  

 𝑄  𝐸, for some 1 <  𝑖 <  𝑘. By previous proof, the average size of the 𝑚 −  𝑗 quorums is equal to 

or greater than 𝑤 −  1. Therefore, the number of elements in R is equal to or greater than  𝑁 −  𝑤 +
 𝑗 + 1 .  

From the Lemma 2 and Lemma 3, there is always a collection of k disjoint quorums which contains m disjoint 

quorumns having the sizes of (𝑚 −  1). Consequently, there is a collection of k pairwise disjoint quorums with 

m disjoint quorums having the sizes of (𝑚 −  1) and (𝑘 −  𝑚) disjoint quorums having the sizes of w.  

 

Lemma 4.  

There exists a collection of k pairwise disjoint quorums in C that consists exactly of 𝑁 −  𝑤 +  1 

elements. 
Proof:  

From Lemma 2, we get 𝑚(𝑤 −  1)  ≤ 𝑁, or 𝑚(𝑤 −  2) ≤ 𝑁 −  𝑚. This means that there are (𝑁 −
 𝑚) elements winch are sufficient enough to form a collection of m  

pairwise disjoint quorums that each quorum has the size of (𝑤 −  1). Then by Lemma 3, 𝑚(𝑤 −  1) +
 (𝑘 − 𝑚)𝑤 =  𝑁 − 𝑤 +  1.  

From Lemma 1, Lemma 2, and Lemma 3, we obtain the following Theorem 2.  

 

Theorem 2. C is a k-coterie under S.  
Proof:  

To prove the Theorem, we have to show that C has two properties: intersection and minimality properties.  

1. Minimality Property. It is obvious, from algorithm that every quorum produced complies the minimality 

property, since for two distinct quorums and 𝑄𝑖 , 𝑄𝑗 , 𝑄𝑖𝑄𝑗. 

2. Intersection Property. Let 𝑅 =  {𝑄1, 𝑄2, . . . . , 𝑄𝑘} be a collection of k pairwise  

disjoint quorums and let 𝑄 ∈ 𝐶 be another distinct quorum. There are two cases to consider: 

 |𝑄𝑖|  =  𝑤, 𝑓𝑜𝑟 1 <  𝑖 <  𝑘. This means that 𝑘𝑤 <  𝑁 −  𝑚. Since 𝑤 =  (𝑘 +  1)𝑤 − (𝑁 +  1), it 

implies that 𝑘𝑤 =  𝑚 +  𝑁 +  1 − 𝑤  𝑁 −  𝑚 or 𝑚 ≤
𝑤−1

2
. By the algorithm, the smallest quorums 

produced have size 𝑤 −  𝑚. Then, the number of elements of 𝑘 +  1 pairwise quorums is 𝑘𝑤 +  𝑤 −
 𝑚 =  𝑁 +  1 >  𝑁.  

 |𝑄𝑖|  < 𝑤 for some 1 <  𝑖 <  𝑘. This means that some elements of E are included in R. Assume in 

𝑚 −  𝑗 elements of E are included in R, where 0 ≤  𝑗 ≤  𝑚, then the number of elements is, by 

Lemma 3, at least 𝑁 −  𝑤 +  𝑗 +  1. In this case, there are two possibilities:  

1) 𝑗 ≥  𝑚𝑖𝑛. Then, the smallest size of Q or |𝑄| = 𝑚𝑖𝑛 and 𝑤 —  𝑗 ≤  𝑚𝑖𝑛. Therefore, the number of 

elements in R is 𝑁 −  𝑤 +  𝑗 +  1 + 𝑚𝑖𝑛 =  𝑁 − (𝑤 − 𝑗) +  𝑚𝑖𝑛 +  1 ≥  𝑁 +  1 >  𝑁.  

2)  𝑗 <  𝑚𝑖𝑛. Then the smallest |𝑄| = 𝑤 —  𝑗(>  𝑚𝑖𝑛). The number of elements is 𝑁 −  𝑤 +  𝑗 +  𝐼 +
 𝑤 −  𝑗 =  𝑁 +  1 >  𝑁.  

 Consequently. in any 𝑘 +  1 pairwise quorums, there exists at least two quorums that  intersect 

each other.   

 

Theorem 3. C is a proper k-coterie under S if one of the following properties is satisfied:  

1. w is even.  

 2. w is odd and 𝑚 <  2𝑤.  

Proof:  

1. First, we will prove that if w is even, C satisfies the non-intersection property. From Lemma 3, if 

|𝐸 ∩ (∪𝑖=1
𝑘−1 𝑄𝑖)| = 𝑚 − 𝑗, the average size of the 𝑚 − 𝑗 quorums is 𝑤 − 1. The number of elements in a 

collection of 𝑘 −  1 pairwise disjoint quorums is (𝑘 −  1)𝑤 −  𝑚 + 𝑗. Let 𝑓(𝑗) =  (𝑘 −  1)𝑤 −  𝑚 + 𝑗. 

We can easily see that 𝑓(𝑗) is a monotone increasing function.  

• If 𝑗 = 𝑚, then 𝑓(𝑗)  =  (𝑘 −  1 )𝑤 and 𝑓(𝑗) ≤  𝑁 −  𝑚. We can form another quorum 𝑄  𝐶 and 
|𝑄|  =  𝑚𝑖𝑛.  
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• If 𝑗 =  0, then 𝑓(𝑗 ) =  (𝑘 −  1 )𝑤 −  𝑚. By Lemma 3, we can find another quorum so that the 

number of the collection of k pairwise disjoint quorums is 𝑁 −  𝑤 +  1.  

 This completes the proof for number 1.  

2. Second, if w is odd, and m <  2w, C satisfies the non-intersection property. The only difference from the 

previous one is when the collection of k −  1 disjoint quorums contains all possible quorums Q, where  E 

. Since w is odd, then min =
w+1

2
 The number of quorums Q  E is ⌊

2𝑚

𝑤+1
⌋ Since m ≤  2w —  1 then we 

have  
 

2𝑚

𝑤 + 1
 ≤

2(2𝑤 —  1)

𝑤 + 1
  

       

2𝑚

𝑤 + 1
≤

2(𝑤 +  1)

𝑤 + 1
 + 

2(𝑤 —  2

𝑤 + 1
) 

 

⌊
2𝑚  

𝑤 + 1
⌋ ≤ 3 

 

The number of other elements (nodes) is 𝑁 —  𝑚. These elements can form other quorums. The number of 

quorums that can be formed from these elements is ⌊
𝑁−𝑚

𝑤
⌋. Since 𝑁 =  (𝑘 +  1 )𝑤 − (𝑚 +  1) and 𝑚 <

 2𝑤 −  1, then we have  

 

𝑁 − 𝑚

𝑤
=  

(𝑘 +  1 )𝑤 − (𝑚 +  1) − 𝑚

𝑤
  

 

𝑁 − 𝑚

𝑤
=  

(𝑘 +  1 )𝑤 − (2𝑚 +  1)

𝑤
  

 

𝑁 − 𝑚

𝑤
≥ (𝑘 + 1) −

2 (2𝑤 −  1) + 1

𝑤
  

 

 

𝑁 − 𝑚

𝑤
≥ (𝑘 + 1) −

4𝑤 − 1

𝑤
 

 

⌊(𝑁 − 𝑚)/𝑤⌋ ≥ 𝑘 − 3 

 

 This implies that the non-intersection property is satisfied.  

 

By Theorem 2, C is k-coterie under S. Because C also satisfies the non-intersection property, it can be 

concluded that C, with above two conditions, is a pi’oper k-coterie under S. 

 

Theorem 4. C is a nondominated k-coterie under S.  

Proof:  

Since any collection of k pairwise disjoint quorums {𝑄1 𝑄2, . . . , 𝑄𝑘} contains x elements, where 𝑥 ≥
 𝑁 —  𝑤 +  1, there is no subset H of S satisfying Theorem 1. Assume that C is a dominated coterie. By 

Theorem 1, there exists a subset 𝐻  𝑆 satisfying two conditions:  

1. for every 𝑄 ∈  𝐶, 𝑄  𝐻, and  

2. for ally collection of k pairwise disjoint quorums {𝑄1, 𝑄2, . . . , 𝑄𝑘}  𝐶, 𝐻 ∩ 𝑄𝑖  ≠ ∅, for some i, 1 < 𝑖 <
 𝑘. The size of H must be less than or equal to (𝑤 —  1). There are two possibilities of the size of H or |𝐻|  
a. If 𝑚𝑖𝑛 ≤  |𝐻|  ≤  𝑤 −  1, then H must be a subset of some quorums which do not contain any element 

of a set 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑘}. But then, this H does not satisfy the second condition of Theorem 1 , 

since by Lemma 3 and Lemma 4, we can always select a collection of k pairwise quorums that contains 

exactly 𝑁 −  𝑤 +  1 elements that do not include any element of the subset. 𝐻  𝑆.  

b. If |𝐻|  <  𝑚𝑖𝑛, then, again, this H cannot satisfy the secoiid condition of the Theorem 1 . There are 

two cases 
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1) If 𝐻 ∩ 𝐸 =  ∅. This means that H is a subset of a collection of quorums that do not consist of 

any element of set E. By the previous proof, H does not satisfiy the second condition of Theorem1.  

2) (h) If 𝐻 ∩  𝐸 ≠  ∅. Form a set of k pairwise disjoint quorums which consists of  (𝑚 −  ⌊
𝑤−1

2
⌋ ) 

quorums that have sizes of (𝑤 −  1) and (𝑘 −  (𝑚 −  ⌊
𝑤−1

2
⌋ ) quorums that have sizes of w. Let  

 

𝑓(𝑚 − ⌊
𝑤 − 1

2
⌋))  =  (𝑚 − ⌊

𝑤 − 1

2
⌋)(𝑤 −  𝐼)  + (𝑘— (𝑚 − ⌊

𝑤 − 1

2
⌋)𝑤. 

then we have 

𝑓 (𝑚 − ⌊
𝑤 − 1

2
⌋) =  𝑘𝑤 − (𝑚 − ⌊

𝑤 − 1

2
⌋) 

𝑓 (𝑚 −  ⌊
𝑤 − 1

2
⌋) =   𝑘𝑤 −  ((𝑘 +  1)𝑤 − (𝑁 +  1) − ⌊

𝑤 − 1

2
⌋) 

𝑓 (𝑚 − ⌊
𝑤 − 1

2
⌋) =   𝑁 − ⌊

𝑤 − 1

2
⌋) 

 

  

𝑓 (𝑚 − ⌊
𝑤 − 1

2
⌋) =   𝑁 −  𝑚𝑖𝑛 + 1) 

 

Again, since we can form a collection of k pairwise disjoin quorums that contains at most 

− 𝑚𝑖𝑛 +  1 , H does not satisfy the second condition of Theorem 1.  

It can be concluded there is no H satisfying two conditions of Theorem 1. So C is nondominated k-coterie. 

 

 

4. CONCLUSION 

The algorithm to construct nondominated k-coteries is presented. This algorithm works for any 

combination of N, the number of nodes in a distributed system, and k, the number of processes allowed to enter 

critical sections symultaneously. The algorithm is the extension of Majk method, which produces mainly 

dominated k-coteries. The proposed algorithm also produces nearly symmetric k-coteries. Although the 
algorithm to construct nondominated k-coteries for any value of N and k, has been proposed, there is still an 

open challenging problem. The problem found here is how to find an algortihm that can construct symmetric 

and proper nondominated k-coteries. What we have here is that still our algorithm may not construct symmetri 

k-coteries especially when (N +1)/ (k + 1) ≠ w. But, the algorithm may not produce proper coteries when w is 

odd and m > 2w. 
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