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Abstract 
With the increasing use of CiteSeer academic search engines, the accuracy of such systems has 

become more and more important. The paper adopts the improved particle swarm optimization algorithm 
for training conditional random field model and applies it into the research papers’ title and citation 
retrieval. The improved particl swarm optimization algorithm brings the particle swarm aggregation to 
prevent particle swarm from being plunged into local convergence too early, and uses the linear inertia 
factor and learning factor to update particle rate. It can control algorithm in infinite iteration by the iteration 
between particle relative position change rate. The results of which using the standard research papers’ 
heads and references to evaluate the trained conditional random field model shows that compared with 
traditionally conditional random field model and Hidden Markov Model, the conditional random field model, 
optimized and trained by improved particle swarm, has been better ameliorated in the aspect of F1 mean 
error and word error rate. 
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1. Introduction 

Academic search engines such as CiteSeer and Cora has brought great convenience 
and influence for researchers. So the quality provided by such systems is very important. It is 
dependant on the information retrieval components which extract titles, authors, institutions and 
other meta-data from papers because these metadata later would be used for a variety of 
applications, such as domain based searching and the authors research.  

Previously, academic information retrieval is based on two main machine learning 
techniques. The first is Hidden Markov Model (HMM). HMM obtains generation model from the 
input and label sequence pairs. Although  HMM gains great success, the standard HMM model 
is difficult to build the model for multiple independent features of observation sequence. The 
other technique is based on support vector machine (SVM) classifier. It can process multiple 
non-independent features, but it divides information retrieval into two steps and breaks the close 
coordination between state transition and observation.  

This paper introduces a conditional random field model [1] (CRF) for the academic 
metadata retrieval and applies the model to solving the practical problems in order to prove that 
the model is superior to HMM and SVM. CRF has been successfully used in biological entity 
recognition [2, 3, 4]. The model loosens the strong random hypothesis of HMM and effectively 
overcomes the label bias problem. Similar to Max Entropy Markov Model (MEMM). CRF is also 
a conditional probability sequence model. But  the difference is that CRF is an undirected graph 
model.  

In CRF, maximum likelihood parameter estimation is crucial because these parameters 
concern the performance and accuracy of the applications based on CRF. The maximum 
likelihood estimation usually adopts nonlinear conjugate gradient algorithm [5, 6, 7], Newton 
method [8], BFGS [9], gradient acceleration algorithm [11], virtual evidence acceleration 
algorithm [1], piecewise hypothesis likelihood method [10, 11], stochastic gradient method [12], 
minimum divergence beam method [13] and so on. 

This paper uses improved particle swarm optimization algorithm to estimate the 
maximum likelihood parameters of CRF model. In order to prevent the algorithm fallen into the 



          ISSN: 2302-4046 

TELKOMNIKA Vol. 11, No. 3, March 2013 : 1213 – 1220 

1214

local convergence in the early time of search, this paper adopts an appropriate aggregation 
degree to control particles aggregation level. And to prevent the algorithm converging slowly 
near the best location and going into an infinite iteration, this paper employs  inertia and 
learning factor which is linear varying to control particle search range and the relative change 
rate of iterative particle position to terminate iteration. Finally, this article applies the trained 
conditional random field model is the use of the standard research papers’  head and reference 
data set retrieval. The experimental results shows that compared with traditionally conditional 
random field model and Hidden Markov Model, the conditional random field model ,optimized 
and trained by improved particle swarm, has been better ameliorated in the aspect of word 
accuracy and F metrics.  

This paper is organized as follows: Section 1 introduces the concept of CRF and its’ 
maximum likelihood parameter estimation, Section 2 describes the improved particle swarm 
optimization  and proposes a new model parameters estimation algorithm of CRF based on it, 
Section 3 shows the experimental results and Section 4 gives the summarization of this paper. 
 
 
2. Conditional Random Field Model 

Conditional random field model (CRF) is  an undirected graph model used to calculated 
the conditional probability of the output sequence under the premise of the given input 
sequence. Lafferty [1] gives the definition of CRF: For a given observation sequence x, the 
conditional probability of its’ tag sequence y is the normalized product of the bit function, as 
shown in Formula (1).  

 
( | ) exp( ( , , , ) ( , , ))1p y x t y y x i s y x ij j i i k k i

j k
    (1) 

 

where ( , , , )1t y y x ij i i  is the transition feature function of the whole observation 

sequence, yi is the label of the tag sequence I, ( , , )s y x ik i  is the state feature function of i , x is 

the observation sequence， j  and k  are respectively the weight parameter related to the 

transition feature function and state feature function.  
Common undirected graph model is a linear chain and  corresponds to a finite state 

machine which is suitable for tag sequence. We simply the transition feature function and state 
feature function as below:  

 

( , , ) ( , , , )1s y x i s y y x ii i i   

( , ) ( , , , )1
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where ( , , , )1f y y x ij i i could be taken as state function ( , , , )1s y y x ii i or transition 

function ( , , , )1t y y x ij i i .Thus, for an observation sequence X, the probability of its’ tag sequence 

y is expressed as follows: 
 

1
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Among them, Z ( X ) is a normalization factor: 
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For the maximum likelihood parameter estimation of the conditional random field model 

as shown in Formula(2), it is just a process by training dataset 
(1) (1) ( ) ( )

{( , ), ..., ( , )}
n n

D y x y x  to 

estimate the parameter ( , , ...)1 2   . Among them, D is generated by empirical distribution 

( , )p x y  in order to maximize the log likelihood of the training data.  
 
 
3. Conditional Random Field Model Parameter Estimation based on Improved Particle 
Swarm Optimization 
 
3.1. Improved Particle Swarm Optimization Algorithm  

Particle swarm optimization algorithm [14], first designed by Kennedy and Eberhart, 
imitates birds’ prey behavior to solve the optimization problem. Particle swarm optimization 
algorithm makes a particle swarm ( ix  ) search the optimal value according to a certain evolution 

rule by initializing it. In each round of evolution, each particle's velocity and position have been 
updated in accordance with their current velocity and position, local and global optima value, 
shown as follows:  

 

( 1) ( )

() ( )1

() ( )2

v t w v tid id

c rand p xid id

c rand p xg id

   

   

  

 (5) 

 

( 1) ( ) ( 1)x t x t v tid id id     (6) 

 

Among them， idp  ,the local optimal value, refers to the optimal value got by particle i  

in the dimension d hitherto. gp ,the global optimal value，refers to the optimal value got by all 

particles searching the whole search space up to now. ( )idv t  stands for particle i’s velocity in 

dimension d and ( )idx t  represents particle i’s current location in dimension d. ( 1)idx t   

denotes particle i’s next location in dimension d. w  is the inertia factor and 1c  is the local 

learning factor. 2c  is the global learning factor and ()rand  is the random function in the range of 

[0,1]. 
The traditional particle swarm optimization algorithm has the following problems:  
1. Premature convergence to the local optimal value instead of the global  
In order to prevent the search prematurely into local convergence, we use particle 

swarm aggregation [15] to control it. Particle swarm aggregation describes particle dispersion  
defined as: 

( ) max{| |, , 1, 2, ..., ; ; 1, 2, ..., }d t x x i j m i j d Nid jd      

Among them，m stands for the size of the particle swarm and n represents the search 

space dimension. xid is denotes the particle i in dimension d and x jd  denotes the particle j. If 

( )d t  is less than the set threshold value e, then we reinitialize particle swarm’s velocity and 

position in d-dimensional space.  
2. Particle swarm searches initially very quickly, however, when close to the optimum 

position, its searching speed is slow, and even in the risk of being trapped into local unlimited 
iteration.  

In the particle swarm optimization algorithm, parameter 1 2, ,w c c  is crucial to the speed 

of search and convergence. A big inertia factor does good to global search and a small inertia 
factor is beneficial to local search. Its’ experiential value is close to 1 in the early search stage 
and  close to 0.4 in the final stage. This paper chooses the linearly decreasing inertia factor in 
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order to acquire better global search ability in the early stage and better local search ability in 
the final stage. 

 
W (t) = 1- 0.6*t/M      ( 0 ~ 1)t M   (7) 

 
Where M is the maximum number of iterations and t is the current iteration. 
Traditional particle swarm optimization algorithms usually set 1c  and 2c  as constant 

number. In order to make the particle swarm converge as soon as possible in the early large 
search space without explosive proliferation and  converge to the optimal value as soon as 
possible in the final small search space without revolving around the optimal value, we select 
Formula (8) to update 1c  and 2c : 

 

1 22 , 2
t t

c c
M M

     (8) 

 
Finally, to ensure that the algorithm is not trapped into infinite iteration near the optimal 

position, the paper adopts  the rate of relative position change to terminate iteration. When D is 
less than the threshold value e, iteration will be canceled. 

 

D = ( ( 1)x tid   - ( )x tid ) – ( ( )x tid  -xid(t-1)) / ( ( )x tid  -xid(t-1) (9) 

 

Among the, ( )x tid  stands for the current position of particle i in dimension d and 

( 1)x tid   represents the next position of particle i in dimension d and xid(t-1) is the previous 

position. 
 

3.2. Conditional Random Fields Model Parameter Estimation Method Based on the 
Improved Particle Swarm Optimization Algorithm  

The paper lets the parameter vector   of the conditional random field model of as 
particle group and make them in a d - dimensional space search for optimal values for training 
conditional random fieldsmodel. Detailed steps are described as follows: 

First step: Supposing the current iteration 0, (0) 0idt v   and the dimension number of 

search space is d, we initialize the particle swarm X containing m particles: 

{ , , ..., }1 2

{ , , ..., }1 2

( 0 ~ 1)

xid d d nd

random random randomn

i m

  



 

 

We set the local optimal position and global optimal position as： , 0id id gp x p  . Then 

we preserve fitnessid  ,the local adaptive optimal value, in the array [ ][ ]F i d  and save the global 

adaptive optimal value in the variable gF . 

Second step：Updating the local and global optimal position  
Calculating the adaptive value of each particle: 

( , ) ( , ) ( ) log ( )fitness p x y F y x p x Z xj jid
j
    

We compare the adaptive value of particle I in dimension d with the value of 
array [ ][ ]F i d .If the current value is greater than [ ][ ]F i d , then we reset [ ][ ]F i d  as the current 

value. If the current value is greater than gF , then we reset gF  as the current value. 

Third-step: updating the search velocity and position of the particle swarm: 
 Vid(t+1) = (1- 0.6*t/M) * Vid(t) + (2-t/M)*rand()*(Pid - Xid) +  (2+t/M)*rand()*(Pg - Xid) 

( 1) ( ) ( 1)x t x t v tid id id     
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Forth-setp：calculating the particle swarm’s aggregation ( )d t : 

( ) max{| |, , 1, 2, ..., ; }

2 2max{ ( ) ... ( ) , , 1,2,..., ; }1 1

2max{ ( ) , , 1, 2, ..., ; }
1

d t x x i j m i jid jd
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k

   

 

   

      

   


 

If ( )d t  is less than the preset threshold value e, then we reinitialize the particle swarm’s 

velocity and position in the d-dimensional space.  
Fifth-step: 1t t  . 
If D< 10-7 or t = M, then the iteration will be terminated. Otherwise turn to the second-

step.  
 
 
4. Experiment 
4.1. Experimental Data 

We selects two research papers’ data sets as our experimental data. One is containing 
the head portion and the other is containing citations from references. The two data sets have 
been used for multiple research standard test data（McCallum et al., 2000; Han et al., 2003. 

 
4.1.1. Data Set of Research Paper’s Header  

Academic thesis title is defined as all words from the start of the paper to the first 
chapter (usually the introduction) or to the end of the first page. The title section contains 15 
retrieval domain: title, author, unit, address, summary, e-mail,  date, abstract, introduction, 
telephone number, keyword, URL, degree, ISSN, page number. The header data set contains 
935 headers. According to the previous study, we randomly select 500 pieces of data as training 
data set and the  remaining 435 pieces as test data set. We call the data set H.  

 
4.1.2. Data Set of Research Paper’s References  

References data set is generated by Cora (McCallum et al., 2000). It contains 500 
reference items and we selects 350 items of them as the training data set. The remaining 150 
items are treated as test data. References contain 13 domains: author, title, editor, book title, 
date, journal, volume, school, institutions, page number, address, press, summary. We call the 
data set R.  

 
4.2. Validation Technique 

In order to get a comprehensive evaluation, we used different methods to compare the 
test results. In addition to adopting previously used word accuracy measurement method, we 
will also use a domain F measurement method. The two methods help each other and do better 
to the evaluation results. 

1. Word accuracy. The number of the words is defined as A which belong to a particular 
domain and are correctly identified in the domain. The number of the words is defined as B 
which not belong to but identified in a particular domain. The number of the words is defined as 
C which belong to a particular domain but are not correctly identified in the domain and is D 
which not belong to and are not identified in a domain. The word accuracy is calculated by 

. The ratio of the number of the words whose redictive identification and real 
identification are the same to the total number of words, is defined as the comprehensive 
accuracy. 

2. F1measurement. We use the precision rate and recall rate to calculate F1 

measurement. Precision rate is expressed as  and recall rate is denoted as .F1 is 

represented as . All domains’ average F1 measurement is defined as the 
average F metric. 
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4.3. Experiment Result 
This paper lists the comparison results among the conditional random field model 

trained by the improved particle swarm optimization algorithm, HMM and the conditional random 
field mode trained by the traditional particle swarm optimization algorithm. Table 1 reports the 
results based on H data set. Similar to the previous experiments（Seymore et al., 1999; Han et 
al., 2003, it excludes the introduction field and page number field. F1 measurement results is 
calculated by the precision rate and recall rate  of the original experimental report. Table2 
reports the results based on R data set. CRF（P） denotes the conditional random field model 
trained by the improved particle swarm optimization algorithm and CRF（T） denotes the 
traditional conditional random field model. It could be found  from the comparison of data , the 
conditional random field model trained by the improved particle swarm optimization algorithm 
behaves as good as or better than HMM and the traditional conditional random field model in 
the aspect of word accuracy, F1 measurement. Moreover it is significantly better than the other 
two models in F measurement and comprehensive accuracy.  

 
 

Table 1. Test results based on H data set 
 HMM CRF（P） CRF（T） 
 acc. F1 acc. F1 acc. F1 

title 98.2 82.2 99.7 97.1 98.9 96.5 
author 98.7 81.0 99.8 97.5 99.3 97.2 

unit 98.3 85.1 99.7 97.0 98.1 93.8 
address 99.1 84.8 99.7 95.8 99.1 94.7 

summary 97.8 81.4 98.8 91.2 95.5 81.6 
e-mail 99.9 92.5 99.9 95.3 99.6 91.7 
date 99.8 80.6 99.9 95.0 99.7 90.2 

abstract 97.1 98.0 99.6 99.7 97.5 93.8 
Telephone-number 99.8 53.8 99.9 97.9 99.9 92.4 

keyword 98.7 40.6 99.7 88.8 99.2 88.5 
URL 99.9 68.6 99.9 94.1 99.9 92.4 

degree 99.5 68.8 99.8 84.9 99.5 70.1 
ISSN 99.8 64.2 99.9 86.6 99.9 89.2 

Average F  75.6  93.9  89.7 
Comprehensive 

accuracy 
93.1% 98.3% 92.9% 

 
  

Table 2. Test results based on R data set  
 HMM CRF（P） CRF（T） 
 acc. F1 acc. F1 acc. F1 

author 96.8 92.7 99.9 99.4 98.9 96.5 
Book title 94.4 0.85 97.7 93.7 99.3 97.2 

date 99.7 96.9 99.8 98.9 98.1 93.8 
editor 98.8 70.8 99.5 87.7 99.1 94.7 

institution 98.5 72.3 99.7 94.0 95.5 81.6 
journal 96.6 67.7 99.1 91.3 99.6 91.7 

address 99.1 81.8 99.3 87.2 99.7 90.2 
summary 99.2 50.9 99.7 80.8 97.5 93.8 

Page number 98.1 72.9 99.9 98.6 99.9 92.4 
press 99.4 79.2 99.4 76.1 99.2 88.5 

college 98.8 74.9 99.4 86.7 99.9 92.4 
title 92.2 87.2 98.9 98.3 99.5 70.1 

volume 98.6 75.8 99.9 97.8 99.9 89.2 
Average F1  77.6  91.5  89.7 

Comprehensive 
accuracy 

85.1% 95.37% 92.9% 

 
 
5. Conclusion 

The conditional random field model has great competitiveness in POS tagging, natural 
language processing and other fields, but its performance largely depends on the parameter 
estimation method. A good parameter estimation algorithm is very important for the conditional 
random field model. This paper uses the improved particle swarm optimization algorithm to 
estimate the maximum likelihood parameter of the conditional random field model. And 
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compared with HMM and the traditional conditional random model, the conditional random field 
model trained by the improved particle swarm optimization algorithm has the better word 
accuracy and F measurement value.  

In order to prevent the particle swarm optimization algorithm being fallen into local 
convergence in early period, the paper introduces the particle swarm’s aggregation to control 
the convergence of the algorithm. To make the particle swarm restrain from being trapped into 
an infinite iteration in the optimal position, we introduce an iterative logarithmic likelihood ratio 
as the stop criterion. And to get the best search performance of the particle swarm optimization, 
we adopt the adaptive change method to acquire the inertia factor and learning factor. 
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