
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 20, No. 1, October 2020, pp. 454~464

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v20.i1.pp 454-464  454

Journal homepage: http://ijeecs.iaescore.com

Assisted learning of C programming through automated

program repair and feed-back generation

Sara Mernissi Arifi, Rachid Ben Abbou, Azeddine Zahi
Intelligent Systems & Applications Laboratory, USMBA, Morocco

Article Info ABSTRACT

Article history:

Received Jan 27, 2020

Revised Apr 3, 2020

Accepted Apr 18, 2020

 Programming courses are among all the current academic curricula for
engineering studies. Unfortunately, students often face difficulties already on
the basic concepts. Both students and teachers believe that practical sessions

and guided learning lead to good outcomes. On the other hand, it is virtually
difficult considering the number of students enrolled on programming
courses. This paper presents an automated assessment system for
programming assignments, based on two different methods: static and
dynamic analysis. The presented system aims at providing the student with
an ongoing and various feedback delivered according to the category and the
recurrence of errors. The system imbeds an automated error repairing feature
for the purposes of insuring the assessment process achievement. It operates
if the student fails to submit a correct program despite the feed-back

provided by the system. In such cases, the system uses a penalty mechanism,
customized by the teacher to grade the student‟s program. Testing the
presented automated system, through assessing real students‟ assignments,
showed promising results compared to manual assessment.

Keywords:

Assisted learning

Errors auto-repair

Feed-back
Program assessment

Copyright © 2020 Institute of Advanced Engineering and Science. All rights
reserved.

Corresponding Author:

Sara Mernissi Arifi,

Intelligent Systems & Applications Laboratory,

USMBA, Morocco.

Email: smernissi@hotmail.com

1. INTRODUCTION

Most science, mathematics, engineering, and technology programs expect from students to acquire

programming skills as a part of their curricula. A universal expectation is that the student should learn the

process of solving problems in computer science domain through producing correct programs that compile

and behave as expected [1]. Lahtinen, Ala-Mutka, & Järvinen [2] perceived in their study that both students

and teachers agreed that practical learning situations were the most useful. Immediate feedback during

problem solving has proven useful [3]. However, it is virtually difficult due to time constraints and common

courses sizes. Automated program assessment tools have considerable advantages through providing timely
feed-back [4]. Several tools have emerged in the field of automated program assessment [5]. The review by

Caiza [6] presents an interesting overview of the systems developed for automated grading of programming

assignments over the last forty years. Recent research is more focused on feed-back generation and is aware

of the key part it plays in the student‟s learning process [7–10]. Two main approaches were adopted to

address the feed-back issue in automated assessment of programming assignments.

The first approach is based on the compiler messages, since they are the first feed-back the student

receives. However [11] states that novices can struggle to deal with standard compiler messages, which can

be vague or not accurately describing the error in their code. Hence, making compiler messages more

suiTable for novices was performed in [12]. It consists of rewriting the compiler messages in layman terms

and adding more elaboration to them. In [13], a recognizer parses both the submitted source code and the raw

compiler messages, to find out the error type. The provided feed-back consists of reporting the syntax error‟s

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Assisted learning of C programming through automated program repair … (Sara Mernissi Arifi)

455

type that has been recognised, and a version with highlighted corrected lines in the code. The main limitation

of this approach is that it does not address the possible inaccuracy of the compiling reports and could fail to

provide useful feed-back even with additional elaboration.

The second approach is based on static analysis of uncompilable program code. Watson, Li, & Lau

[14] use a database of common errors to generate three kinds of feedback for Java programs. The first is an

explicit feed-back made of possible causes linked to the class in which the error was identified in the

database. The second is an implicit corrective feed-back which consists of performing replacements of the

erroneous token, retrieved from a ranked list of substitutions ordered by least Levenshtein distance, until the

elimination of the error, only in the case of a „cannot find symbol‟ error. The third is a logic level corrective

feed-back which consists of suggesting solutions that have structural similarity to the student‟s code.
Structural similarity is measured using a tree-based approach and the edit-distance algorithm. The main issue

of this method is that it can be applied to a limited collection of errors. In addition, the accuracy of feed-back

is affected by the accuracy of the comparison method.

Within this paper we present CLAAS, a C Language Automated Assessment System which makes a

synergy of enhanced transcriptions of both discussed approaches [15]. Thus, static analysis in CLAAS is

based on a semantic similarity measurement which insures satisfactory precision in the field of programs‟

similarity detection [16]. Semantic similarity is used in CLAAS to provide a feed-back that consists of

tracking the erroneous or missing parts in the code and assists the student in writing a complete and a good

quality program. On the other hand, dynamic analysis in CLAAS is based on the compiler reports,

errors categorization, but also on the error recurrence. This makes the provided feed-back progressive and

continuous through all the assessment process to address compiling errors. Besides the various feed-back
generated through static and dynamic analysis, a correction unit was implemented in CLAAS to prevent

students‟ discouragement towards persistent compiling errors [17]. This ensures the achievement of the

program assessment process and so the feed-back generation through further assessment stages.

2. APPROACH

Figure 1 presents the overall architecture of the proposed automated assessment system. A hybrid

system based on two different analysis methods to assist students through a various and elaborate feedback.

Figure 1. CLAAS architecture

2.1. Feedback through dynamic analysis of programs in CLAAS

Dynamic analysis of programs consists of executing the assessed program using a set of test-cases

composed each of input data and the expected outputs to check the program behavior in different contexts.

Outputs matching in CLAAS is performed using regular expressions to avoid textual comparison.
In addition, the grading formula is customizable through assigning different weights by the teacher to the

test-cases to express the marking scheme of the exercise. The enhanced dynamic analysis method adopted in

CLAAS in comparison to other program assessment systems was discussed in a previous work [15].

Dynamic analysis method for program automated assessment as shown in Figure 2.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 454 - 464

456

Figure 2. Dynamic analysis method for program automated assessment

2.1.1. Feed-back in the case of compilation failure
The compiler messages are the first automated feed-back received by the student. When students

face compiling errors, they often request the help of the teacher or the assistant [18]. Although Debugging is

a key programming skill, many novices can struggle with ambiguous and unspecific compiler messages due

to their lack of experience in programming field [19].

When dynamically analyzing a program, the system returns a progressive feed-back according to the type

and the recurrence of a compiling error. Therefore, a base of common errors made by novice programmers in C

language learning was designed and fed through manual and automated assessment of real student‟s programs

using CLAAS [17]. The collected errors were clustered within different categories presented in Table 1.

Table 1. Examples of categories in the error base of CLAAS
Error category Examples of errors

Misspelling errors Errors in the names of the language functions

Symbol errors A missed or added semi-colon, a missed & in scanf, missed : after case, etc.

Casting errors Type conversion

Header errors A missed #include<<stdio.h>>, etc.

Operators errors & instead of &&, = instead of ++, etc.

Variable errors Undeclared or uninitialized variable, etc.

Loop errors Error in a loop structure.

Control errors Missing break in switch, etc.

To ensure progressivity in feed-back generation, the evaluator assigns a threshold, and a couple of

feedbacks for each category. The first one is delivered when the number of occurrence of errors belonging to

the same category is lower than the threshold, otherwise, the second and more detailed feedback is returned

to the student. Feedback could be a simple message or a link to a chapter, a document, a web page,

an exercise, etc. The experience of the teacher in programming teaching and programs assessing plays an

important role when predicting the errors and the plausible causes for each exercise to define the

corresponding corrective feedback. Although the error base in CLAAS includes the most common errors

made by novice students in C programming, it is continuously expanding through the emergence of new

errors added by evaluators throughout the use of CLAAS.

Example1: compiler message in the case of misspelling error

The compiler used in CLAAS is Clang, an open source C and C-like language compiler. The reports

returned by Clang are aimed to be detailed, specific and expressive, as well as machine-readable [20].

In example 1, according to the compiler, the problem is the invalid declaration of a function. For a novice student

in programming, this message is ambiguous and does not explain the error and the necessary fixes. CLAAS reports

a similarity between the token „prinft‟ in the compiler message and a function in C language and identifies the error

within the misspelling errors category in the base. Here, the first feedback may consist of the name of the error‟s

category while the second one may warn the student that the word “prinft” is similar to a function in C language or

redirect the student to a section in the course or exercises related to C programming basics as shown in Figure 3.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Assisted learning of C programming through automated program repair … (Sara Mernissi Arifi)

457

Figure 3. A feedback example in CLAAS for a compiling error

Example2: compiler message in the case of a symbol error

In this example, there was an omission of the symbol & in the scanf function. This error is not
detecTable as a compiling error, but the execution of the program does not produce the expected outputs.

Nevertheless, unlike several other compilers, Clang points this as a warning which flags an incompatibility

between the used variable‟s type and the argument used in scanf, an ambiguous message for the learner.

Based on this warning and on the scanf signature in C language, CLAAS performs a parsing into the

erroneous portion of the code to locate the error and its corresponding category in the errors base. In this

example, as a first feed-back, the teacher could remind the student that each argument in scanf function must

be a memory address where the converted result is written. In the second more detailed feed-back, he could

indicate that & symbol should precede each variable in scanf in order to modify his content.

2.1.2. Feed-back in the case of logical errors

Throughout dynamic program analysis, when the evaluated program succeeds the compilation stage,
it is then assessed using test-cases. A test-case failure may be due to a logical error in the program, which

occurs when the exercise specification is not respected. For example, when writing a C program to check

whether a number is positive or negative or zero, most novices omit to consider the case of input = 0.

This causes the failure of the corresponding test-case. Within the exercise creation, the teacher assigns a

feedback to each test-case according to the possible cause of the test-case failure. Figure 4 presents a

proposed feedback which draws the attention of the student to the missed part in his program.

Figure 1. A feedback example after a test case failure in CLAAS

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 454 - 464

458

2.2. Feedback through static analysis of programs in CLAAS

Static analysis of programs refers to the process of examining code without executing it to capture

the defects [21, 22]. Similarity analysis is a static method which consists of measuring similarity between two

programs. This method is adopted in CLAAS to assess submitted programs and provide an elaborate feed-

back for the student as shown in Figure 5.

Static program analysis based on semantic similarity measurement is used in CLAAS in order to

grade the student program according to the degree of its similarity to a model program [23]. Thus, the

compared programs are sliced into a set of blocs, then each bloc in the student program is sequentially
compared to all the blocs in the model program.The performed comparisons are based on symbolic execution

outputs of the blocs in the programs. These comparisons generate semantic similarity rates, used in a

weighted formula to calculate the grade of the evaluated program. The guiding principle behind semantic

similarity measurement is that two structurally different programs could be semantically equivalent.

The grading process was discussed in a previous work [16]. Semantic similarity measurement is used to

assist the student in identifying the errors in three different cases.

a) Case n°1: The blocs having a low similarity degree are mainly suspicious. Therefore, they are flagged to

be checked by the students for errors detection.

b) Case n°2: Semantic similarity measurement serves as well to detect dead code in the student program

when the evaluated program has a full mark, and a bloc showed no similarity to none of the blocs in the

model program through all the performed comparisons. This bloc is then identified as unnecessary,

and the returned feed-back suggests its removal from the student program. Such feed-back assists the
student in acquiring good habits for writing optimized code.

c) Case n°3: Through assessing large numbers of assignments, we noticed that students frequently submit

incomplete programs. Using semantic similarity measurement, we can detect incomplete programs, when a

bloc in the model program has no similar bloc in the student program. In this case, the feed-back informs

the students that his program needs to be completed and returns the feed-back associated by the evaluator to

the corresponding bloc in the model program that should be added to complete the student program.

Figure 5. Static analysis method for program assessment in CLAAS

Let‟s consider a programming problem which consists of writing a program to calculate the sum,

product, quotient or the difference of two entered numbers, according to the chosen operation. Figure 6

presents a model program (PM), a student program (PS) and semantic similarity percentages between the

blocks in PM and PS. In CLAAS, the evaluator assigns a feed-back to the blocs of the model programs.

The bloc A6 in the model program have no similar bloc in the evaluated program. This bloc handles the case

of a division by zero. In this case, the feed-back returned to the student consists of reporting that the bloc
covering the division by zero is missed in his program. It could also return the instructions in the bloc A6

according to the evaluator‟s setting.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Assisted learning of C programming through automated program repair … (Sara Mernissi Arifi)

459

Figure 6. Control flow graph and similarity rates between a model and a student program

2.3. Compiling errors auto-repair

Compiling errors are frequently committed by students. They are the easiest to fix, however,

students face difficulties and spend a long time to detect, localize and fix this kind of errors [24, 25].

Most students submit uncompilable programs while based on correct algorithms. Automated repairing of

errors consists first of their detection and localizing. It is activated after several attempts made by the student

to submit a compiled program. The number of authorized resubmissions (n) is defined by the teacher among
the exercise parameters as shown in Figure 7.

Figure 7. Program auto-repair process in the case of a compiling error

The compiler is still a strong tool for errors detection. Thus, the errors repairing is performed by the

correction unit in CLAAS, using the compiler logs to perform the necessary fixes (Figure 7). The correction

unit presented above, analyses the compiling reports and considers the first reported error. To localize the

error in the source code, the correction unit performs syntactical parsing of the erroneous portion in the code,
based on the number of the line contained in the compiler message. The automated repairing in CLAAS is

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 454 - 464

460

performed through an iterative process. Hence, after repairing the first message in the compiler log,

the correction unit then triggers a new compilation. The process is interrupted when it exceeds the max

number of iterations is reached or when the correction unit is not able to correct the remaining errors.

Examples of automated repairing of compiling errors

a) Example 1: exemple1.c:3:23: error: expected ';' after expression

The missed semicolon is a frequently committed error in novices‟ programs. This error is well captured

and localized in the compiler message. In this case, the correction unit uses this information to insert the

missed character and generates a new code.
b) Example 2: exemple2.c:5:13: warning: format specifies type „int *‟ but the agrument has type „int‟[-

Wformat]

The missed & in scanf function is another frequent error in programming. This error causes no

compilation failure; however, execution outputs are invalid. Clang returns a warning in this case to

signal an incompatibility between the used variable and the argument in scanf function. In this case,

the correction unit performs a parsing of the scanf function signature in the erroneous line in the code

and the missed & is then inserted to generate a new code for the next compilation.

c) Example 3: exemple3.c:6:17: error: expected ';' in 'for' statement specifier

for(i=0,i<a;i++){

In this example, the error is detected by the compiler and localized before the closing parenthesis in the
loop. Inserting the missing character in the location returned by the compiler resolves the compiling

error; however, it generates invalid execution outputs. In this case, the correction unit analyses the

erroneous line in the code, to detect the violation in the “for” loop syntax and inserts the missed

semicolon in the appropriate place. In such cases, the correction unit uses only the compiler information

about the erroneous line, and performs the appropriate correction based on the „for‟ function signature.

Figure 8 presents a comparative display of a program with 15 different compiling errors repaired

after 6 iterations by the correction unit in CLAAS.

Figure 8. Errors mapping to the performed corrections

3. EXPERIMENTATION

In order to check the accuracy of compiling errors auto-repair process in CLAAS, 185 real programs

were submitted by students in first-year of bachelor‟s degree of Science & Technics to resolve 5 programming

exercises within a mock exam. The following graphs presents the results of automated assessment before and after

applying the automated repairing of compiling errors, compared to manual assessment as shown in Figure 9-13.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Assisted learning of C programming through automated program repair … (Sara Mernissi Arifi)

461

Figure 2. Exercice 1: C program checking whether the input integer number is positive or negative or zero

Figure 10. Exercice 2: C program which asks to input 5 grades between 0 and 20 and counts the grades >=10

Figure 11. Exercise 3: C program to perform addition, subtraction, multiplication and division according to

the chosen operation

Figure 12. Exercise 4: C program to print stars according to the input integer

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 454 - 464

462

Figure 13. Exercise 5: C program which asks to input an integer <=100 while the input number is not valid

The results show that 20% of the evaluated programs have a null grade. For 55% of these programs,

compilation failure interrupted the assessment process; consequently, they did not reach test-cases analysis. Within
this experiment, 28 errors from different categories were repaired by the correction unit in CLAAS. Table 2

presents the averages of grades obtained from manual and automated grading, before and after implementing

program auto-repair function. In addition, we calculated the grade precision, a degree between 0% and 100%

which reflects the approximation between the manual grading results and the automated ones before and after

applying the automated repairing of compiling errors. The grade precision is calculated using the formula (1).

 (
| |

) (1)

Table 2. Averages of manual and automated grading

Marking

scheme

Average grades of

manual grading

Grades of automated grading
Grades of automated grading

using program auto-repair

Average Grade precision Average Grade precision

Exercise1 2/20 1,76 1,54 89% 1,59 92%

Exercise2 2/20 0,59 0,38 89% 0,38 89%

Exercise3 6/20 4,35 2,74 73% 3,21 81%

Exercise4 6/20 4,36 3,48 85% 3,64 88%

Exercise5 4/20 1,34 0,56 81% 0,64 83%

Total grade 20/20 12,41 8,70 81% 9,47 85%

4. DISCUSSION

The various categories of feed-back proposed within this work meet several criterions of valuable feed-

back, which should be informative, timely, consistent, clearly communicated and useful for students. CLAAS

provides feedbacks with different amount of elaboration, delivered progressively according to the performance of
the student. The feed-back generation process in CLAAS was designed to meet the human proceeding in assisting

students within programming courses. For this purpose, both static and dynamic methods were used to consider

different aspects of the evaluated program and provide useful and continuous feed-back, from flagging the

erroneous or missing lines in the code, to reporting the origin of a test-case failure or a compiling problem.

Despite the various feed-back generated by CLAAS, the student could still submit a program with

compiling errors that cannot be executed and assessed whilst it might be partially correct. This prevents the

assessment of the program correctness and thus the algorithm on which the solution is based. Program auto-repair is

implemented in CLAAS within the correction unit, which localizes and fixes compiling errors in the student program.

Thus, the student receives feed-back during all the assessment process, from compiling to test-cases execution.

During the experiments within practical sessions, we noticed that students were asking less for teachers‟ assistance

and were motivated to use the delivered feed-back to solve the encountered problems.

5. CONCLUSION

This work is the continuation of previous research in the field of automated assessment of C

programs. It focuses on feed-back as a paramount factor which assists the student through the learning

process. The use of static and dynamic program analysis, in addition to the automated repair of programs

provides a variety of valuable feed-backs for the student. This is ensured through considering different

aspects of the evaluated program to assist the student at various levels within the evaluation process.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Assisted learning of C programming through automated program repair … (Sara Mernissi Arifi)

463

By the means of the feed-back integrated in CLAAS, the student can face difficulties due to the lack of

compiling errors understanding, he can also investigate the cause of the program failure to produce the expected

behavior, as well as appreciating the semantic similarity between his program and a program proposed by the

teacher to learn good programming habits and submit a complete, functional and correct program.

The integration of such kinds of feed-back can serve to envision a new generation of compilers dedicated to the

assessment of students‟ programs in the context of programming learning, which considers specific needs and

requirements of students in this field. As future work, we are planning a long-term performance review among the

use of feed-back in CLAAS, since measuring the impact of feed-back integration on students‟ learning takes

several years and a rigorous process to abolish subjectivity due to the context, human factors, etc. We also aim at

covering additional types of errors to expand the usefulness of CLAAS.

REFERENCES
[1] I. Kožuh, R. Krajnc, L. J. Hadjileontiadis, and M. Debevc, “Assessment of problem solving ability in novice

programmers,” PLoS ONE, vol. 13, no. 9, pp. 1–21, 2018.
[2] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the difficulties of novice programmers,” ACM

SIGCSE Bulletin, vol. 37, no. 3, pp. 14–18, Sep. 2005.
[3] A. T. Corbett and J. R. Anderson, “Locus of Feedback Control in Computer-Based Tutoring : Impact on Learning

Rate, Achievement and Attitudes,” in ACM Conference on Human Factors in Computing Systems, 2001, pp. 245–252.
[4] J. Hattie and H. Timperley, “The Power of Feedback,” Review of Educational Research, vol. 77, no. 1, pp. 81–112, 2007.
[5] R. Singh et al., “Automated Feedback Generation for Introductory Programming Assignments,” ACM SIGPLAN

Notices, pp. 15–26, 2013.
[6] J. C. Caiza, J. M. Del Alamo, and J. M. Del Álamo Ramiro, “Programming Assignments Automatic Grading:

Review of Tools and Implementations,” 7th International Technology, Education and Development Conference

(INTED2013), pp. 5691–5700, 2013.
[7] Y. Dong, T. W. Price, and T. Barnes, “Generating Data-driven Hints for Open-ended Programming,” Proceedings

of the 9th International Conference on Educational Data Mining, pp. 191–198, 2016.
[8] B. Jeffries, T. Baldwin, M. Zalk, and B. Taylor, “Online tutoring to support programming exercises,” ACE 2020 -

Proceedings of the 22nd Australasian Computing Education Conference, Held in conjunction with Australasian
Computer Science Week, pp. 56–65, 2020.

[9] O. Mirmotahari, Y. Berg, S. Gjessing, E. Fremstad, and C. Damsa, “A case-study of automated feedback assessment,”
in IEEE Global Engineering Education Conference, EDUCON, 2019, vol. April-2019, pp. 1190–1197.

[10] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review of automated feedback generation for

programming exercises,” ACM Transactions on Computing Education, vol. 19, no. 1, Sep. 2018.
[11] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler error messages: what can help novices?,” in

Proceedings of the 39th SIGCSE technical symposium on Computer science education, 2016.
[12] B. A. Becker, “An effective approach to enhancing compiler error messages,” SIGCSE 2016 - Proceedings of the

47th ACM Technical Symposium on Computing Science Education, pp. 126–131, 2016.
[13] P. Denny, A. Luxton-reilly, and D. Carpenter, “Enhancing Syntax Error Messages Appears Ineffectual,” in

Proceedings of the 2014 conference on Innovation & technology in computer science education., 2014, pp. 273–278.
[14] C. Watson, F. W. B. Li, and R. W. H. Lau, “Learning Programming Languages through Corrective Feedback and

Concept Visualisation,” in International Conference on Web-Based Learning, 2011, pp. 11–20.
[15] S. Mernissi Arifi, I. Nait Abdallah Ouali, A. Zahi, and R. Benabbou, “Automatic program assessment using static

and dynamic analysis,” in Proceedings of 2015 IEEE World Conference on Complex Systems, WCCS 2015, 2015.
[16] S. Mernissi Arifi, A. Zahi, and R. Benabbou, “Semantic similarity based evaluation for C programs through the use

of symbolic execution,” in IEEE Global Engineering Education Conference, EDUCON, 2016, vol. 10-13-Apri.
[17] S. Mernissi Arifi, I. Nait Abdallah Ouali, R. Benabbou, and A. Zahi, “Automated fault localizing and correction in

dynamically analyzed programs,” in Colloquium in Information Science and Technology, CIST, 2016.
[18] J. Munson and E. Schilling, “Analyzing novice programmers‟ response to compiler error messages,” Journal of

Computing Sciences in Colleges, vol. 31, no. 3, pp. 53–61, 2016.
[19] R. Pettit, J. Homer, and R. Gee, “Do enhanced compiler error messages help students? Results inconclusive,” Proceedings

of the Conference on Integrating Technology into Computer Science Education, ITiCSE, pp. 465–470, 2017.
[20] C. Guntli, “Architecture of clang,” University of Applied Science in Rapperswil, pp. 1–12, 2011.
[21] K. M. Ala-mutka, “A Survey of Automated Assessment Approaches for Programming Assignments,” Computer

Science Education, vol. 15, no. 2, pp. 83–102, 2005.
[22] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically finding semantic differences in binary programs,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 5308 LNCS, pp. 238–255, 2008.
[23] S. Mernissi Arifi, R. Benabbou, and A. Zahi, “A New Similarity-based Method for Assessing Programming Assignments

using Symbolic Execution,” International Journal of Applied Engineering Research, vol. 13, no. 4, pp. 1963–1981, 2018.
[24] S. Parihar, R. Das, Z. Dadachanji, A. Karkare, P. K. Singh, and A. Bhattacharya, “Automatic grading and feedback

using program repair for introductory programming courses,” Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE, vol. Part F128680, pp. 92–97, 2017.

[25] C. Watson, F. W. B. Li, and J. L. Godwin, “BlueFix: Using Crowd-Sourced Feedback to Support Programming Students in
Error Diagnosis and Repair,” International Conference on Web-Based Learning, no. September, pp. 228–239, 2012.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 454 - 464

464

BIOGRAPHIES OF AUTHORS

Sara Mernissi Arifi got his Ph.D. in Computer Science from Sidi Mohamed Ben Abdellah
University in Fez, Morocco. Currently acting as a teacher of computer science in a secondary
school since 2005. His main interests are in automated assessment in elearning environments,
program analysis and web development.

Rachid Ben Abbou is a Professor in Computer Science Department at Sidi Mohamed Ben
Abbdellah University in Fez, Morocco since 1997. Member of Laboratory of Intelligent Systems
and Applications (LSIA). His research interests concern ad hoc network, VANET, security in

Cloud Computing, e-learning, Automatic Assessment.

Azeddine Zahi is a full Professor of computer science at the Faculty of Sciences and
Technology of Fez University in Morocco, since 1995. He received his Master and Doctorate of

3rd Cycle in Computer Science from the University of Mohamed V in 1994 and 1997
respectively. He is an active member of the Intelligent Systems and Applications Laboratory
(LSIA). His research area is related to Data Mining and Artificial Intelligence. He is concerned
with the use of data mining process, machine learning methods and artificial intelligence
techniques in the fields such as software project cost estimation, pattern recognition, Adhoc
Networks and automatic evaluation of computer programs. He is also interested by new trends in
Data mining and data analytics that aimed to deal with many issues arising in complex
environment, such as uncertainty, incompleteness, heterogeneity and Bigness.

