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 Programming courses are among all the current academic curricula for 
engineering studies. Unfortunately, students often face difficulties already on 
the basic concepts. Both students and teachers believe that practical sessions 

and guided learning lead to good outcomes. On the other hand, it is virtually 
difficult considering the number of students enrolled on programming 
courses. This paper presents an automated assessment system for 
programming assignments, based on two different methods: static and 
dynamic analysis. The presented system aims at providing the student with 
an ongoing and various feedback delivered according to the category and the 
recurrence of errors. The system imbeds an automated error repairing feature 
for the purposes of insuring the assessment process achievement. It operates 
if the student fails to submit a correct program despite the feed-back 

provided by the system. In such cases, the system uses a penalty mechanism, 
customized by the teacher to grade the student‟s program. Testing the 
presented automated system, through assessing real students‟ assignments, 
showed promising results compared to manual assessment. 
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1. INTRODUCTION  

Most science, mathematics, engineering, and technology programs expect from students to acquire 

programming skills as a part of their curricula. A universal expectation is that the student should learn the 

process of solving problems in computer science domain through producing correct programs that compile 

and behave as expected [1]. Lahtinen, Ala-Mutka, & Järvinen [2] perceived in their study that both students 

and teachers agreed that practical learning situations were the most useful. Immediate feedback during 

problem solving has proven useful [3]. However, it is virtually difficult due to time constraints and common 

courses sizes. Automated program assessment tools have considerable advantages through providing timely 
feed-back [4]. Several tools have emerged in the field of automated program assessment [5]. The review by 

Caiza [6] presents an interesting overview of the systems developed for automated grading of programming 

assignments over the last forty years. Recent research is more focused on feed-back generation and is aware 

of the key part it plays in the student‟s learning process [7–10]. Two main approaches were adopted to 

address the feed-back issue in automated assessment of programming assignments. 

The first approach is based on the compiler messages, since they are the first feed-back the student 

receives. However [11] states that novices can struggle to deal with standard compiler messages, which can 

be vague or not accurately describing the error in their code. Hence, making compiler messages more 

suiTable for novices was performed in [12]. It consists of rewriting the compiler messages in layman terms 

and adding more elaboration to them. In [13], a recognizer parses both the submitted source code and the raw 

compiler messages, to find out the error type. The provided feed-back consists of reporting the syntax error‟s 
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type that has been recognised, and a version with highlighted corrected lines in the code. The main limitation 

of this approach is that it does not address the possible inaccuracy of the compiling reports and could fail to 

provide useful feed-back even with additional elaboration.  

The second approach is based on static analysis of uncompilable program code. Watson, Li, & Lau 

[14] use a database of common errors to generate three kinds of feedback for Java programs. The first is an 

explicit feed-back made of possible causes linked to the class in which the error was identified in the 

database. The second is an implicit corrective feed-back which consists of performing replacements of the 

erroneous token, retrieved from a ranked list of substitutions ordered by least Levenshtein distance, until the 

elimination of the error, only in the case of a „cannot find symbol‟ error. The third is a logic level corrective 

feed-back which consists of suggesting solutions that have structural similarity to the student‟s code. 
Structural similarity is measured using a tree-based approach and the edit-distance algorithm. The main issue 

of this method is that it can be applied to a limited collection of errors. In addition, the accuracy of feed-back 

is affected by the accuracy of the comparison method.  

Within this paper we present CLAAS, a C Language Automated Assessment System which makes a 

synergy of enhanced transcriptions of both discussed approaches [15]. Thus, static analysis in CLAAS is 

based on a semantic similarity measurement which insures satisfactory precision in the field of programs‟ 

similarity detection [16]. Semantic similarity is used in CLAAS to provide a feed-back that consists of 

tracking the erroneous or missing parts in the code and assists the student in writing a complete and a good 

quality program. On the other hand, dynamic analysis in CLAAS is based on the compiler reports,  

errors categorization, but also on the error recurrence. This makes the provided feed-back progressive and 

continuous through all the assessment process to address compiling errors. Besides the various feed-back 
generated through static and dynamic analysis, a correction unit was implemented in CLAAS to prevent 

students‟ discouragement towards persistent compiling errors [17]. This ensures the achievement of the 

program assessment process and so the feed-back generation through further assessment stages. 

 

 

2. APPROACH 

Figure 1 presents the overall architecture of the proposed automated assessment system. A hybrid 

system based on two different analysis methods to assist students through a various and elaborate feedback. 

 

 

 
 

Figure 1. CLAAS architecture 

 

 

2.1.   Feedback through dynamic analysis of programs in CLAAS 

Dynamic analysis of programs consists of executing the assessed program using a set of test-cases 

composed each of input data and the expected outputs to check the program behavior in different contexts. 

Outputs matching in CLAAS is performed using regular expressions to avoid textual comparison.  
In addition, the grading formula is customizable through assigning different weights by the teacher to the 

test-cases to express the marking scheme of the exercise. The enhanced dynamic analysis method adopted in 

CLAAS in comparison to other program assessment systems was discussed in a previous work [15]. 

Dynamic analysis method for program automated assessment as shown in Figure 2. 
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Figure 2. Dynamic analysis method for program automated assessment 

 

 

2.1.1. Feed-back in the case of compilation failure 
The compiler messages are the first automated feed-back received by the student. When students 

face compiling errors, they often request the help of the teacher or the assistant [18]. Although Debugging is 

a key programming skill, many novices can struggle with ambiguous and unspecific compiler messages due 

to their lack of experience in programming field [19]. 

When dynamically analyzing a program, the system returns a progressive feed-back according to the type 

and the recurrence of a compiling error. Therefore, a base of common errors made by novice programmers in C 

language learning was designed and fed through manual and automated assessment of real student‟s programs 

using CLAAS [17]. The collected errors were clustered within different categories presented in Table 1. 

 

 

Table 1. Examples of categories in the error base of CLAAS 
Error category Examples of errors 

Misspelling errors Errors in the names of the language functions 

Symbol errors A missed or added semi-colon, a missed & in scanf, missed : after case, etc. 

Casting errors Type conversion 

Header errors A missed #include<<stdio.h>>, etc. 

Operators errors & instead of &&, = instead of ++, etc. 

Variable errors Undeclared or uninitialized variable, etc. 

Loop errors Error in a loop structure. 

Control errors Missing break in switch, etc. 

 

 
To ensure progressivity in feed-back generation, the evaluator assigns a threshold, and a couple of 

feedbacks for each category. The first one is delivered when the number of occurrence of errors belonging to 

the same category is lower than the threshold, otherwise, the second and more detailed feedback is returned 

to the student. Feedback could be a simple message or a link to a chapter, a document, a web page,  

an exercise, etc. The experience of the teacher in programming teaching and programs assessing plays an 

important role when predicting the errors and the plausible causes for each exercise to define the 

corresponding corrective feedback. Although the error base in CLAAS includes the most common errors 

made by novice students in C programming, it is continuously expanding through the emergence of new 

errors added by evaluators throughout the use of CLAAS.  

 

Example1: compiler message in the case of misspelling error 

 
 
The compiler used in CLAAS is Clang, an open source C and C-like language compiler. The reports 

returned by Clang are aimed to be detailed, specific and expressive, as well as machine-readable [20].  

In example 1, according to the compiler, the problem is the invalid declaration of a function. For a novice student 

in programming, this message is ambiguous and does not explain the error and the necessary fixes. CLAAS reports 

a similarity between the token „prinft‟ in the compiler message and a function in C language and identifies the error 

within the misspelling errors category in the base. Here, the first feedback may consist of the name of the error‟s 

category while the second one may warn the student that the word “prinft” is similar to a function in C language or 

redirect the student to a section in the course or exercises related to C programming basics as shown in Figure 3. 
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Figure 3. A feedback example in CLAAS for a compiling error  

 

 

Example2: compiler message in the case of a symbol error 

 
 

In this example, there was an omission of the symbol & in the scanf function. This error is not 
detecTable as a compiling error, but the execution of the program does not produce the expected outputs. 

Nevertheless, unlike several other compilers, Clang points this as a warning which flags an incompatibility 

between the used variable‟s type and the argument used in scanf, an ambiguous message for the learner.  

Based on this warning and on the scanf signature in C language, CLAAS performs a parsing into the 

erroneous portion of the code to locate the error and its corresponding category in the errors base. In this 

example, as a first feed-back, the teacher could remind the student that each argument in scanf function must 

be a memory address where the converted result is written. In the second more detailed feed-back, he could 

indicate that & symbol should precede each variable in scanf in order to modify his content. 

 

2.1.2. Feed-back in the case of logical errors 

Throughout dynamic program analysis, when the evaluated program succeeds the compilation stage, 
it is then assessed using test-cases. A test-case failure may be due to a logical error in the program, which 

occurs when the exercise specification is not respected. For example, when writing a C program to check 

whether a number is positive or negative or zero, most novices omit to consider the case of input = 0.  

This causes the failure of the corresponding test-case. Within the exercise creation, the teacher assigns a 

feedback to each test-case according to the possible cause of the test-case failure. Figure 4 presents a 

proposed feedback which draws the attention of the student to the missed part in his program. 

 

 

 
 

Figure 1. A feedback example after a test case failure in CLAAS 
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2.2.   Feedback through static analysis of programs in CLAAS 

Static analysis of programs refers to the process of examining code without executing it to capture 

the defects [21, 22]. Similarity analysis is a static method which consists of measuring similarity between two 

programs. This method is adopted in CLAAS to assess submitted programs and provide an elaborate feed-

back for the student as shown in Figure 5.  

Static program analysis based on semantic similarity measurement is used in CLAAS in order to 

grade the student program according to the degree of its similarity to a model program [23]. Thus, the 

compared programs are sliced into a set of blocs, then each bloc in the student program is sequentially 
compared to all the blocs in the model program.The performed comparisons are based on symbolic execution 

outputs of the blocs in the programs. These comparisons generate semantic similarity rates, used in a 

weighted formula to calculate the grade of the evaluated program. The guiding principle behind semantic 

similarity measurement is that two structurally different programs could be semantically equivalent.  

The grading process was discussed in a previous work [16]. Semantic similarity measurement is used to 

assist the student in identifying the errors in three different cases. 

a) Case n°1: The blocs having a low similarity degree are mainly suspicious. Therefore, they are flagged to 

be checked by the students for errors detection.  

b) Case n°2: Semantic similarity measurement serves as well to detect dead code in the student program 

when the evaluated program has a full mark, and a bloc showed no similarity to none of the blocs in the 

model program through all the performed comparisons. This bloc is then identified as unnecessary,  

and the returned feed-back suggests its removal from the student program. Such feed-back assists the 
student in acquiring good habits for writing optimized code. 

c) Case n°3: Through assessing large numbers of assignments, we noticed that students frequently submit 

incomplete programs. Using semantic similarity measurement, we can detect incomplete programs, when a 

bloc in the model program has no similar bloc in the student program. In this case, the feed-back informs 

the students that his program needs to be completed and returns the feed-back associated by the evaluator to 

the corresponding bloc in the model program that should be added to complete the student program.  

 

 

 
 

Figure 5. Static analysis method for program assessment in CLAAS 

 

 

Let‟s consider a programming problem which consists of writing a program to calculate the sum, 

product, quotient or the difference of two entered numbers, according to the chosen operation. Figure 6 

presents a model program (PM), a student program (PS) and semantic similarity percentages between the 

blocks in PM and PS. In CLAAS, the evaluator assigns a feed-back to the blocs of the model programs.  

The bloc A6 in the model program have no similar bloc in the evaluated program. This bloc handles the case 

of a division by zero. In this case, the feed-back returned to the student consists of reporting that the bloc 
covering the division by zero is missed in his program. It could also return the instructions in the bloc A6 

according to the evaluator‟s setting. 
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Figure 6. Control flow graph and similarity rates between a model and a student program 

 

 

2.3.   Compiling errors auto-repair 

Compiling errors are frequently committed by students. They are the easiest to fix, however, 

students face difficulties and spend a long time to detect, localize and fix this kind of errors [24, 25].  

Most students submit uncompilable programs while based on correct algorithms. Automated repairing of 

errors consists first of their detection and localizing. It is activated after several attempts made by the student 

to submit a compiled program. The number of authorized resubmissions (n) is defined by the teacher among 
the exercise parameters as shown in Figure 7. 

 

 

 
 

Figure 7. Program auto-repair process in the case of a compiling error 

 

 

The compiler is still a strong tool for errors detection. Thus, the errors repairing is performed by the 

correction unit in CLAAS, using the compiler logs to perform the necessary fixes (Figure 7). The correction 

unit presented above, analyses the compiling reports and considers the first reported error. To localize the 

error in the source code, the correction unit performs syntactical parsing of the erroneous portion in the code, 
based on the number of the line contained in the compiler message. The automated repairing in CLAAS is 
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performed through an iterative process. Hence, after repairing the first message in the compiler log,  

the correction unit then triggers a new compilation. The process is interrupted when it exceeds the max 

number of iterations is reached or when the correction unit is not able to correct the remaining errors. 

Examples of automated repairing of compiling errors 

a) Example 1: exemple1.c:3:23: error: expected ';' after expression 

The missed semicolon is a frequently committed error in novices‟ programs. This error is well captured 

and localized in the compiler message. In this case, the correction unit uses this information to insert the 

missed character and generates a new code. 
b) Example 2: exemple2.c:5:13: warning: format specifies type „int *‟ but the agrument has type „int‟[-

Wformat] 

The missed & in scanf function is another frequent error in programming. This error causes no 

compilation failure; however, execution outputs are invalid. Clang returns a warning in this case to 

signal an incompatibility between the used variable and the argument in scanf function. In this case,  

the correction unit performs a parsing of the scanf function signature in the erroneous line in the code 

and the missed & is then inserted to generate a new code for the next compilation. 

c) Example 3: exemple3.c:6:17: error: expected ';' in 'for' statement specifier 

 

for(i=0,i<a;i++){ 

 

In this example, the error is detected by the compiler and localized before the closing parenthesis in the 
loop. Inserting the missing character in the location returned by the compiler resolves the compiling 

error; however, it generates invalid execution outputs. In this case, the correction unit analyses the 

erroneous line in the code, to detect the violation in the “for” loop syntax and inserts the missed 

semicolon in the appropriate place. In such cases, the correction unit uses only the compiler information 

about the erroneous line, and performs the appropriate correction based on the „for‟ function signature.  

Figure 8 presents a comparative display of a program with 15 different compiling errors repaired 

after 6 iterations by the correction unit in CLAAS. 

 

 

 
 

Figure 8. Errors mapping to the performed corrections 

 

 

3. EXPERIMENTATION 

In order to check the accuracy of compiling errors auto-repair process in CLAAS, 185 real programs 

were submitted by students in first-year of bachelor‟s degree of Science & Technics to resolve 5 programming 

exercises within a mock exam. The following graphs presents the results of automated assessment before and after 

applying the automated repairing of compiling errors, compared to manual assessment as shown in Figure 9-13. 
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Figure 2. Exercice 1: C program checking whether the input integer number is positive or negative or zero 

 

 

 
 

Figure 10. Exercice 2: C program which asks to input 5 grades between 0 and 20 and counts the grades >=10 

 

 

 
 

Figure 11. Exercise 3: C program to perform addition, subtraction, multiplication and division according to 

the chosen operation 

 

 

 
 

Figure 12. Exercise 4: C program to print stars according to the input integer 
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Figure 13. Exercise 5: C program which asks to input an integer <=100 while the input number is not valid 

 

 

The results show that 20% of the evaluated programs have a null grade. For 55% of these programs, 

compilation failure interrupted the assessment process; consequently, they did not reach test-cases analysis. Within 
this experiment, 28 errors from different categories were repaired by the correction unit in CLAAS. Table 2 

presents the averages of grades obtained from manual and automated grading, before and after implementing 

program auto-repair function. In addition, we calculated the grade precision, a degree between 0% and 100% 

which reflects the approximation between the manual grading results and the automated ones before and after 

applying the automated repairing of compiling errors. The grade precision is calculated using the formula (1). 

 

   (  
|                             |

             
)      (1) 

 

 

Table 2. Averages of manual and automated grading 

 

Marking 

scheme 

Average grades of 

manual grading 

Grades of automated grading 
Grades of automated grading 

using program auto-repair 

Average Grade precision Average Grade precision 

Exercise1 2/20 1,76 1,54 89% 1,59 92% 

Exercise2 2/20 0,59 0,38 89% 0,38 89% 

Exercise3 6/20 4,35 2,74 73% 3,21 81% 

Exercise4 6/20 4,36 3,48 85% 3,64 88% 

Exercise5 4/20 1,34 0,56 81% 0,64 83% 

Total grade 20/20 12,41 8,70 81% 9,47 85% 

 

 

4. DISCUSSION 

The various categories of feed-back proposed within this work meet several criterions of valuable feed-

back, which should be informative, timely, consistent, clearly communicated and useful for students. CLAAS 

provides feedbacks with different amount of elaboration, delivered progressively according to the performance of 
the student. The feed-back generation process in CLAAS was designed to meet the human proceeding in assisting 

students within programming courses. For this purpose, both static and dynamic methods were used to consider 

different aspects of the evaluated program and provide useful and continuous feed-back, from flagging the 

erroneous or missing lines in the code, to reporting the origin of a test-case failure or a compiling problem. 

Despite the various feed-back generated by CLAAS, the student could still submit a program with 

compiling errors that cannot be executed and assessed whilst it might be partially correct. This prevents the 

assessment of the program correctness and thus the algorithm on which the solution is based. Program auto-repair is 

implemented in CLAAS within the correction unit, which localizes and fixes compiling errors in the student program. 

Thus, the student receives feed-back during all the assessment process, from compiling to test-cases execution.  

During the experiments within practical sessions, we noticed that students were asking less for teachers‟ assistance 

and were motivated to use the delivered feed-back to solve the encountered problems. 
 

 

5. CONCLUSION 

This work is the continuation of previous research in the field of automated assessment of C 

programs. It focuses on feed-back as a paramount factor which assists the student through the learning 

process. The use of static and dynamic program analysis, in addition to the automated repair of programs 

provides a variety of valuable feed-backs for the student. This is ensured through considering different 

aspects of the evaluated program to assist the student at various levels within the evaluation process. 
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By the means of the feed-back integrated in CLAAS, the student can face difficulties due to the lack of 

compiling errors understanding, he can also investigate the cause of the program failure to produce the expected 

behavior, as well as appreciating the semantic similarity between his program and a program proposed by the 

teacher to learn good programming habits and submit a complete, functional and correct program.  

The integration of such kinds of feed-back can serve to envision a new generation of compilers dedicated to the 

assessment of students‟ programs in the context of programming learning, which considers specific needs and 

requirements of students in this field. As future work, we are planning a long-term performance review among the 

use of feed-back in CLAAS, since measuring the impact of feed-back integration on students‟ learning takes 

several years and a rigorous process to abolish subjectivity due to the context, human factors, etc. We also aim at 

covering additional types of errors to expand the usefulness of CLAAS. 
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