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 Groundwater sustainability is the development and use of groundwater 

resources to meet current and future beneficial uses without causing 
unacceptable environmental or socioeconomic consequences. This study is  
the first time to apply the hybrid optimization technique for solving of 
managing underground water aquifers, the confined steady flow problems, 
where a hybrid water cycle - particle swarm optimization WCA-PSO is 
proposed. In particular, we introduce a novel hybrid algorithm using water 
cycle algorithm (WCA) and particle swarm Optimization (PSO).  
The performance of the novel hybrid algorithm WCA-PSO is evaluated to 
solve 10 benchmark problems chosen from literature. The simulation results 

and comparison with pure WCA and PSO algorithms confirm the 
effectiveness of the proposed algorithm WCA-PSO for solving various 
benchmark optimization functions. Finally, we solve the problem of 
managing underground water aquifers by WCA, PSO and the hybrid 
optimization WCA-PSO. The experimental results analysis and statistical 
tests prove that the hybrid algorithm WCA-PSO overcomes the pure 
algorithms.  
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1. INTRODUCTION  

Many real-world optimization problems are very complex and challenging to solve, and many 

applications have to deal with these problems. To solve such problems, approximate optimization methods 

have to be used, though there is no guarantee that the optimal solution can be obtained [1]. Nature has been 

solving many problems for billions of years, and many kinds of biological systems have shown fascinating 

and remarkable efficiency in problem solving [2-4]. Over the last few decades optimization algorithms have 

been applied in extensive numbers of difficult problems. Several nature-inspired algorithms have been 

developed over the last few years by the scientific community [2-5].  

Water management is a major challenge facing the different countries due to water increasing needs 

in all fields of life. More attention has been devoted to understanding and managing the transition from 

current management regimes to more adaptive regimes. So, we will manage underground water aquifers 
where it based on the finite difference approximation to the system as which treated through fuzziness 

environment. The uncertainty due to imprecise data may be come from indirect measurements, expert 

judgment, or subjective to the interpretation of available information. Also, the finite difference method is 

used to approximate the governing equation of groundwater flow, in which aquifer parameters such as 

transmissivity are to be considered as a fuzzy number. So, the variables in the system are fuzzy instead of its 
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crisp values and then the dependent variable (e.g. hydraulic head) is also fuzzy. When the transmissivity is 

represented as a fuzzy number, the membership function of the hydraulic head outputs can be easily 

determined based on the analytical solution. At each level, both the transmissivity and hydraulic heads are 

transformed into intervals. Since there are not research studies which use the hybrid optimization technique 

for solving this problem. So, this work is the first time to apply the hybrid optimization technique for solving 

of managing underground water aquifers, the confined steady flow problems, where a hybrid water cycle - 

particle swarm optimization WCA-PSO is proposed. 

Particle swarm optimization (PSO) algorithm is nature-inspired population-based metaheuristic 

algorithms originally accredited to Eberhart, Kennedy, and Russell Eberhart in 1995 [6]. This algorithm 

mimics the social behavior of birds flocking and fishes schooling. Starting form a randomly distributed set of 
particles (potential solutions), the algorithm try to improve the solutions according to a quality measure 

(fitness function). The improvisation is performed through moving the particles around the search space by 

means of a set of simple mathematical expressions which model some interparticle communications [7]. 

The water cycle process, also known as the hydrological or the H2O cycle, explains the unceasing 

movement of water on, above, and below the surface of the earth. As we observe in nature, streams flow into 

rivers and rivers flow into the sea. Finally, all the rivers and/or streams end up in the sea, the most downhill 

(low-altitude) place in the world [8]. Therefore, similar to a metaheuristic swarm optimization algorithm, this 

phenomenon lends itself to finding a global optimal solution or a near-optimal solution via effective 

exploration and exploitation. Inspired by this observation, the water cycle algorithm (WCA) has been 

developed as a new metaheuristic algorithm [9]. 

In this work, we introduce a novel hybrid algorithm using water cycle algorithm (WCA) and particle 
swarm Optimization (PSO). The performance of the novel hybrid algorithm WCA-PSO is evaluated to solve 

10 benchmark problems chosen from literature. The simulation results and comparison with pure WCA and 

PSO algorithms confirm the effectiveness of the proposed algorithm WCA-PSO for solving various 

benchmark optimization functions. Finally, we solve the problem of managing underground water aquifers 

by WCA, PSO and the hybrid optimization WCA-PSO. The experimental results analysis and statistical tests 

prove that the hybrid algorithm WCA-PSO overcomes the other algorithms. 

The remaining of this paper is organized as follows: particle swarm optimization details and its 

procedure are described in Section 2. In Section 3, detailed descriptions of the water cycle algorithm (WCA) 

and their concepts are introduced. The proposed algorithm is discussed in Section 4. Benchmark functions 

accompanied with their mathematical formulations considered in this paper and the comparisons of  

the obtained statistical optimization results using the WCA-PSO with other traditional optimization 

algorithms PSO, WCA for reported problems in form of tables and figures are provided in Section 5. Section 
6 describes the multiobjective fuzzy optimization model for aquifer management. Section 7 provides details 

of the solution and analysis results model for the aquifer management problem, also parameter settings of the 

algorithms and compares their results. Finally, conclusions are drawn in Section 8. 

 

 

2. PARTICLE SWARM ALGORITHM 

Particle swarm optimization (PSO) algorithm is nature-inspired population-based metaheuristic 

algorithms mimic the social behavior of birds flocking and fishes schooling [6, 7]. It is considered a 

stochastic optimization approach based on population search. These algorithms individuals, referred to as 

particles, are grouped into a swarm, and each particle in the swarm represents a feasible solution to the 

problem in the search space. The performance of each particle is measured according to a predefined fitness 
function which is related to the problem being solved [10]. PSO use a population of individual particles 

where each particle has a position, a velocity, and memory of the location of its best fitness found during the 

search process. Each particle updates its velocity and memory, and then the memory of other particles is 

shared in its neighborhood. By updating the velocity, the particle will move to a new position in the search. 

The main steps of the cuckoo search algorithm are summarized in Algorithm 1. The PSO in its original form 

is defined by [11, 12]: 

 

𝑉𝑖𝑑
𝑡+1 = 𝑤. 𝑣𝑖𝑑

𝑡 + 𝑐1. 𝑟1𝑑
𝑡 (𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2. 𝑟2𝑑

𝑡 (𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 )  

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1  ,      𝑑 = 1,2,… . . 𝑛   (1) 

 

where 𝑣𝑖𝑑
𝑡  and  𝑥𝑖𝑑

𝑡    the velocity and position vectors of particle 𝑖 in dimension 𝑑 at time 𝑡, respectively,   

𝑤 is representative of the inertia weight,  𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡  is the personal best position of particle 𝑖,  𝐺𝑏𝑒𝑠𝑡

𝑡   is the global 

best position of particle 𝑖, 𝑐1 , 𝑐2  are positive acceleration constants which are used to level the contribution 

of the cognitive and social components respectively; 𝑟1𝑑
𝑡  , 𝑟2𝑑

𝑡   are random numbers from uniform distribution 
U(0,1) at time.  
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3. WATER CYCLE ALGORITHM 

The WCA mimics the flow of rivers and streams toward the sea and was derived by observing  

the water cycle process. Assume that there are some rain or precipitation phenomena. An initial population of 

design variables is randomly generated after the raining process. The best individual, classified in terms of 

having the minimum cost function (for minimization problems), is chosen as the sea [13]. 

Then, a number of good streams are chosen as rivers, whereas the remaining streams flow into  

the rivers and the sea. Starting the optimization algorithm requires the generation of an initial population 

representing a matrix of streams of size 𝑁𝑝𝑜𝑝 ×  𝐷, where D is the dimension and (𝑁𝑝𝑜𝑝) is the population 

size. Hence, this matrix, which is generated randomly, is given as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

[
 
 
 
 
 
 
 
 

𝑠𝑒𝑎 
𝑅𝑖𝑣𝑒𝑟1
𝑅𝑖𝑣𝑒𝑟2

⋮
𝑆𝑡𝑟𝑒𝑎𝑚𝑁𝑠𝑟+1

𝑆𝑡𝑟𝑒𝑎𝑚𝑁𝑠𝑟+2

𝑆𝑡𝑟𝑒𝑎𝑚𝑁𝑠𝑟+3

⋮
𝑆𝑡𝑟𝑒𝑎𝑚𝑁𝑝𝑜𝑝

 

]
 
 
 
 
 
 
 
 

= [
𝑥1

1 𝑥2
1 𝑥3

1

⋮ ⋮ ⋮

𝑥1
𝑁𝑝𝑜𝑝

𝑥2
𝑁𝑝𝑜𝑝

𝑥3
𝑁𝑝𝑜𝑝

… 𝑥𝐷
1

⋮ ⋮

… 𝑥𝐷
𝑁𝑝𝑜𝑝

] (2) 

 

In the first step, 𝑁𝑝𝑜𝑝 streams are created. Then, a number of best individuals 𝑁𝑠𝑟 (minimum 

values) are selected as the sea and rivers. The stream which has the minimum value among the others is 

considered as the sea. In fact, 𝑁𝑠𝑟 is the summation of the number of rivers (which is defined by the user) 

and a single sea. The rest of the population (𝑁𝑠𝑡𝑟𝑒𝑎𝑚) are considered as streams flowing into the rivers or 

may alternatively flow directly into the sea [14].  

Depending on the magnitude of the flow, each river absorbs water from streams. Hence, the amount 

of water entering a river and/or the sea varies from stream to stream. In addition, rivers flow to the sea, which 

is the most downhill location. The designated streams for each river and the sea are calculated using  
the following [15]: 

 

𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑 {|
𝐶𝑜𝑠𝑡𝑛−𝐶𝑜𝑠𝑡𝑁𝑠𝑟+1

∑ 𝐶𝑛
𝑁𝑠𝑟
𝑛=1

| × 𝑁𝑆𝑡𝑟𝑒𝑎𝑚𝑠},  

 

𝑛 = 1,2,3,… . , 𝑁𝑠𝑟  (3) 

 

where 𝑁𝑆𝑛is the number of streams which flow into the specific rivers and the sea. For the exploitation phase 

of the WCA, new positions for streams and rivers have been suggested as follows [13]: 
 

𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡 + 1) = 𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (𝑋𝑠𝑒𝑎(𝑡) − 𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡))  (4) 

 

𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡 + 1) = 𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (𝑋𝑟𝑖𝑣𝑒𝑟(𝑡) − 𝑋𝑠𝑡𝑟𝑒𝑎𝑚(𝑡))  (5) 

 

𝑋𝑟𝑖𝑣𝑒𝑟(𝑡 + 1) = 𝑋𝑟𝑖𝑣𝑒𝑟(𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (𝑋𝑠𝑒𝑎(𝑡) − 𝑋𝑟𝑖𝑣𝑒𝑟(𝑡))  (6) 

 

where 𝑡 is an iteration index, 1 <  𝐶 <  2, and the best value for 𝐶 may be chosen as 2, and rand is a 

uniformly distributed random number between [0,1]. In (4) And (5) are for streams which flow into the sea 

and their corresponding rivers, respectively. If the solution given by a stream is more optimal than that of its 

connecting river, the positions of the river and stream are exchanged. A similar exchange can be performed 
for a river and the sea. The evaporation process operator is also introduced to avoid premature (immature) 

convergence to local optima (exploitation phase) [13]. Basically, evaporation causes sea water to evaporate 

as rivers/streams flow into the sea. This leads to new precipitation. Therefore, we have to check whether the 

river/stream is sufficiently close to the sea to enable the evaporation process to occur. The following criterion 

is utilized for the evaporation condition between a river and the sea [15]: 

 

‖𝑋𝑠𝑒𝑎
𝑡 − 𝑋𝑟𝑖𝑣𝑒𝑟𝑗

𝑡 ‖ < 𝑑𝑚𝑎𝑥    𝑜𝑟   𝑟𝑎𝑛𝑑 < 0.1  𝑗 = 1,2,… , 𝑁𝑠𝑟 − 1 (7) 
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where 𝑑𝑚𝑎𝑥 is a small number close to zer o. After evaporation, the raining process is applied and new 

streams are formed in different locations. Indeed, the evaporation operator is responsible for the exploration 

phase in the WCA. Uniform random search is used to specify the new locations of the newly formed streams. 

A large value for 𝑑𝑚𝑎𝑥 prevents additional searches and small values encourage the search intensity near the 

sea. Therefore, 𝑑𝑚𝑎𝑥 controls the search intensity near the sea. The value of 𝑑𝑚𝑎𝑥 adaptively decreases as  

follows [16]: 

 

 𝑑𝑚𝑎𝑥(𝑡 + 1) = 𝑑𝑚𝑎𝑥(𝑡) −
𝑑𝑚𝑎𝑥(𝑡)

𝑚𝑎𝑥.𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
    𝑡 = 1,2,… , max. iteration  (8) 

 

For more details about the metaheuristic approach, we can see [17, 18]. 

 

 

4. THE PROPOSED ALGORITHM FOR OPTIMIZATION PROBLEM 

In this section, we propose a new hybrid algorithm WCA-PSO is collaborative combinations of  

the WCA and PSO techniques. In this hybrid, firstly, WCA explores the search place in order to either isolate 
the most promising region of the search space. Secondly, to improve global search and avoid trapping into 

local optima, it is introduced PSO to explore search space (starting with the solution obtained by WCA) and 

find new population, which is closer to optimal solution. Further, WCA will be obtained the best model 

parameters vector. The structure of the hybrid WCA-PSO is shown by the following Algorithm 1. 

 

 

Algorithm 1: Hybrid WCA-PSO Algorithm 

      Input: Objective function min or max 𝒇(𝒙) 
Output: The optimal solutions for each variable and the optimal cost 
 
Determine the initial parameters of WCA 𝑵𝒑𝒐𝒑,𝑵𝒔𝒓,: and Maximum Iteration. 

Generate randomly initial population and Forming the initial sea, rivers and streams. 
Calculate the fitness of each initial population by using  𝒇(𝒙)  
Computing the corresponding flow intensity of river and sea 
While (𝒕 <  𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏) 

            For i=1: Population size (𝑵𝒑𝒐𝒑) 

                                    Stream flows to its corresponding rivers and sea  
                                    Calculate the objective function of the generated stream 
                                    If F_New_Stream < F_river 
                                             River = New_stream 
                                             If F_New_stream < F_Sea 

                                                  Sea = New_Stream 

                                             End  

                                     End  
                                     River flows to the sea 
                                     Calculate the objective function of the generated river 
                                     If F_New_River < F_Sea 

                                              Sea = New_River 

                                     End  

             End  
             For i=1: number of rivers (𝑵𝒔𝒓) 

                           If (distance (Sea and River) < 𝒅𝒎𝒂𝒙) or (rand < 0.1) 

                                 New streams are created 

                        End  

             End  
              Reduce the 𝒅𝒎𝒂𝒙 

End while 
Store the best solution of water cycle as the initial locations 𝒙𝒊 of n particles 

      Initialize velocity 𝒗𝒊 of n particles. 

      Find 𝒈∗ from objective function 𝒇(𝒙) (at t = 0) 

while (criterion) 
for loop over all n particles and all d dimensions  

Generate new velocity 𝒗𝒊𝒅
𝒕+𝟏  , Calculate new locations 𝑿𝒊𝒅

𝒕+𝟏 =  𝑿𝒊𝒅
𝒕 + 𝑽𝒊𝒅

𝒕+𝟏   

Evaluate objective functions at new locations 𝑿𝒊𝒅
𝒕+𝟏 

Find the current best for each particle  

End for 
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5. EVALUATION OF THE PROPOSED ALGORITHM WCA-PSO 

The main objective of this section is the evaluation of the proposed algorithm WCA-PSO by 

benchmark problems. We evaluate the performance of the proposed algorithm WCA-PSO by the numerical 

simulation based on some Benchmark problems [17, 18] to investigate the performances of the proposed 

algorithms. The functions name with global optimum, search ranges and initialization ranges of the test 

functions are presented in Table 1. In these problems, the essential parameters of WCA are number of rivers 

and sea Nsr = 4. And the PSO constants are C1 = C2 = 2, the population size for all algorithms is 50 that are  

the same used for WCA-PSO algorithm. The results of all algorithms are conducted from 20 independent run 

for each problem. All the experiments were performed on a Windows 10 Ultimate 64-bit operating system; 

processor Intel Core i7 760 running at 2.40 GHz; 8 GB of RAM and code was implemented in  
MATLAB 2016. 

From Table 2 and Figure 1, the results show that the proposed hybrid algorithm WCA-PSO 

overcome the traditional PSO and traditional WCA solutions. The results explain that WCA-PSO is robust 

and competitive with the state-of the-art well-known evolutionary algorithms. We note that the performance 

of WCA-PSO is significantly superior to all the present algorithms for all functions according to the 

experimental results. The mean and the difference between the best value and worst value of the result 

obtained by WCA-PSO were small compared to the results we have obtained from other algorithms in 

functions F03, F04, F06, F07, F08 and F10. General, the performance of WCA-PSO is highly competitive 

with other algorithms. 

 

 
Table 1. The benchmark functions 

ID. FUNCTION DOMAIN FORMULATION G.M 

F01 Ackley [-32,32] −20 exp(−0.2√
1

𝑑
∑ 𝑥𝑖

2 
𝑁

𝑖−1
) − exp (

1

𝑛
∑ cos 2𝜋𝑥𝑖

𝑁

𝑖=1
) + 20 + 𝑒 0 

F02 De Jongfunction N.5 [-65.54,65.54] 

(0.002 + ∑
1

𝑖 + (𝑥1 − 𝑎1𝑖)
6 + (𝑥1 − 𝑎2𝑖)

6

25

𝑖=1
)
−1

 

 

𝑎 = (
−32 −16
−32 −32

0 16 32
−32 −32 −32

−32 … 16
−16 ⋯ 32

) 

1 

F03 Drop-wave [-5.12,5.12] − 
1 + cos(12√𝑥1

2 + 𝑥2
2)

2 + 0.5(𝑥1
2 + 𝑥2

2)
 -1 

F04 Goldstein and Price [-2,2] 
[1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)] × 

× [30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2) 

3 

F05 Griewank [-600,600] 
1

4000
∑ 𝑥𝑖

2
𝑁

𝑖=1
− ∏cos(

𝑥𝑖

√𝑖
) + 1

𝑁

𝑖=1

 0 

F06 Himmelblau [-6,6] (𝑥1
2 + 𝑥2 − 11)2 + (𝑥2

2 + 𝑥1 − 7)2 0 

F07 Rastrigrin [-5.12,5.12] ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑑

𝑖=1
 0 

F08 Rotated hyper-ellipsoid [-69.54,69.54] ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)2

𝑁

𝑖
 0 

F09 Schwefel [-500,500] 418.9829𝑁 − ∑ (𝑥𝑖 sin(√|𝑥𝑖|))
𝑁

𝑖=1
 0 

F10 sphere [-5.12,5.12] ∑ 𝑥𝑖
2

𝑁

𝑖=1
 0 

 

 

Table 2. The optimal solution results of proposed algorithm and other algorithms 
ID. Algorithm Min Max Mean Stander Deviation 

F01 

PSO 8.19E-16 8.88E-16 8.26E-16 2.1327E-17 

WCA 1.17E-16 8.89E-16 8.19E-16 3.10E-16 

WCA-PSO 8.88E-16 8.88E-16 8.88E-16 1.01169E-31 

F02 

PSO 9.88E-01 2.98E+00 1.74E+00 0.844551579 

WCA 9.98E-01 1.98E+00 9.98E-01 0.302118 

WCA-PSO 9.98E-01 1.99E+00 9.98E-01 0.499609 

Find the current global best 𝒈∗ 

Update 𝒕 =  𝒕 +  𝟏  

End while 

Display result. 
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F03 

PSO -1.00E+00 -9.98E-01 -1.00E+00 0.000732695 

WCA -1.00E+00 -9.99E-01 -1.00E+00 0.00030779 

WCA-PSO -1.00E+00 -1.00E+00 -1.00E+00 0.00E+00 

F04 

PSO 3.00E+00 3.01E+00 3.00E+00 0.004396171 

WCA 3.00E+00 3.00E+00 3.00E+00 0.000158 

WCA-PSO 3.00E+00 3.00E+00 3.00E+00 0.00E00 

F05 

PSO 0.00E00 7.40E-03 1.85E-03 0.003285759 

WCA -7.39E-03 4.00E-01 4.74E-03 0.01976451 

WCA-PSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F06 

PSO 0.00E+00 7.89E-31 1.58E-31 3.23635E-31 

WCA 0.00E+00 7.89E-31 0.00E+00 1.88793E-31 

WCA-PSO 0.00E+00 7.89E-31 0.00E+00 3.5E-31 

F07 

PSO 0.00 E+00 1.78E-14 2.66E-15 6.50633E-15 

WCA 0.00E+00 3.55E-15 1.78E-15 1.04E-15 

WCA-PSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F08 

PSO 1.64E-220 9.50E-114 4.75E-115 2.1242E-114 

WCA 3.97E-223 4.37E-118 3.35E-218 9.65E-119 

WCA-PSO 6.43E-225 8.74E-206 4.94E-217 0.00E00 

F09 

PSO 2.55E-05 1.18E+02 4.74E+01 59.53005127 

WCA 2.55E-05 1.18E+02 2.55E-05 43.38946163 

WCA-PSO 2.55E-05 1.18E+02 2.55E-05 60.44877 

F10 

PSO 1.05E-228 4.08E-112 2.07E-113 9.1E-113 

WCA 1.29E-224 3.78E-117 2.59E-220 8.4051E-118 

WCA-PSO 4.31E-227 7.78E-209 3.58E-220 0.00 E+00 
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Figure 1. F01:F10 the convergence rate of the function error values on 10 function (continue) 

 

 

6. MULTIOBJECTIVE FUZZY OPTIMIZATION MODEL FOR AQUIFER MANAGEMENT 

O. M. Saad et al. [19] formulated the fuzzy multiobjective optimization model for the aquifer 

management, in three dimensions as follows:  

(FMOM): 

 

max ∑ ∑ ∑ �̃�𝑖𝑗𝑘  𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1   

 

(9a) 

 

𝑚𝑎𝑥  ∑ ∑ ∑ �̃�𝑖𝑗𝑘   𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1   (9b) 
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min∑ ∑ ∑ [𝜃(�̃�𝑖𝑗𝑘)𝛿 + 𝛾 + 𝛽]𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1   

 

(9c) 

 

Subject to: 

 

 

 

∑ ∑ ∑ �̃�𝑖𝑗𝑘   𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1 ≥ Demand 

 

(10a) 
 

𝐴𝑛×𝑛(𝑇)̃�̃�𝑛×1 ≤ �̃�𝑛×1 + �̃�𝑛×1  
 

(10b) 

 

𝑊𝑙 ≤ 𝑊𝛼 ≤ 𝑊𝑢  

T, L, b, W≥ 0 

 

(10c) 

 

where 𝐴𝑛×𝑛(𝑇)̃ is the matrix of fuzzy head coefficients which is a function of the transmissivity, �̃�𝑛×1 is a 

fuzzy vector of unknown head values at each node,  �̃�𝑛×1is a fuzzy vector containing the boundary head 

conditions, �̃�𝑛×1 is a fuzzy vector which associated with the pumping rate, 𝜃 = 5543, 𝛿 =0.299, 𝛾 is  

the per-well drilling cost ($/well), and 𝛽 is the pump cost ($/pump), ~ represents the presence of fuzzy 
numbers within the matrices or vectors. Thus, model output will be expressed by membership functions that 

describe the head values as fuzzy variables. 

Definition 1 

The ∝-cut (alpha cut) is a method to generate a crisp interval corresponding to a given membership 

value. The crisp set contains all elements of the universal set are greater than or equal to the specified value.  

A ∝-cut set of triangular fuzzy number  �̃� = (𝑎𝑙 , 𝑎𝑚 , 𝑎𝑟) is defined as [20]. 

 

�̃�(𝑥) =  {𝑥: 𝜇�̃�(𝑥) ≥ 𝛼}  

 

Thus, for any 𝛼 ∈ [0,1], we can obtain a ∝-cut set of triangular fuzzy number �̃�, which is an 
interval, denoted by: 

 

�̃�(𝛼) = [𝑎𝑙(𝛼), 𝑎𝑅(𝛼)] ; 
𝑎𝑙(𝛼) =  𝛼𝑎𝑚 + (1 − 𝛼)𝑎𝑙  

𝑎𝑅(𝛼) =  𝛼𝑎𝑚 + (1 − 𝛼)𝑎𝑅  

(11) 

 

where 𝑎𝑙(𝛼) is a left number, 𝑎𝑅(𝛼) is a right number and 𝑎𝑚 is a mean of 𝑎𝑙 and 𝑎𝑅, as shown at Figure 2. 
 
 

 
 

Figure 2. Triangle Membership function of fuzzy number 
 

 

For certain values 𝛼𝑇
∗ , 𝛼ℎ

∗ , 𝛼𝑏
∗ , 𝛼𝑞

∗  to be in the interval [0, 1], the problem (FMOM) (9a) and (10c) 

can be reformulated as the following fuzzy multiobjective fuzzy optimization model for the aquifer 

management, in three-dimensions as follows: 

(𝛼 − 𝐹𝑀𝑂𝑀): 
 

𝐦𝐚𝐱∑ ∑ ∑ 𝑳𝒊𝒋𝒌  
𝒍
𝒌=𝟏

𝒎
𝒋=𝟏

𝒏
𝒊=𝟏   

 

  (12a) 

𝐦𝐚𝐱∑ ∑ ∑ 𝑾𝒊𝒋𝒌  
𝒍
𝒌=𝟏

𝒎
𝒋=𝟏

𝒏
𝒊=𝟏   

 

(12b) 

 

𝐦𝐢𝐧∑ ∑ ∑ [𝜽(𝑳𝒊𝒋𝒌)
𝜹
+ 𝜸 + 𝜷]𝒍

𝒌=𝟏
𝒎
𝒋=𝟏

𝒏
𝒊=𝟏   (12c) 
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Subject to: 

 

 

∑ ∑ ∑ 𝑾𝒊𝒋𝒌  
𝒍
𝒌=𝟏

𝒎
𝒋=𝟏

𝒏
𝒊=𝟏 ≥ Demand 

 

(13a) 

 

𝑨𝒏×𝒏(𝑻)𝑳𝒏×𝟏 ≤ 𝒃𝒏×𝟏 + 𝑾𝒏×𝟏   

 

(13b) 

 

𝑻𝒍 ≤ 𝑻𝜶 ≤ 𝑻𝒖  
 

(13c) 

 

𝑳𝒍 ≤ 𝑳𝜶 ≤ 𝑳𝒖  
 

(13d) 
 

𝒃𝒍 ≤ 𝒃𝜶 ≤ 𝒃𝒖   
 

(13e) 

 

𝑾𝒍 ≤ 𝑾𝜶 ≤ 𝑾𝒖  

T, L, b, W≥ 𝟎 

(13f) 

 

where 𝑇𝑙 , 𝑇𝑢 , 𝐿𝑙 , 𝐿𝑢 , 𝑏𝑙 , 𝑏𝑢,𝑊𝑙 and 𝑊𝑢 are lower and upper bounds on T, L, b and W, respectively.  
In (13b) can be calculated from the partial differential equation describing the system of interest in 

three dimensions as follows:  

 
𝜕

𝜕𝑥
(𝑇

𝜕𝐿

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑇

𝜕𝐿

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑇

𝜕𝐿

𝜕𝑧
) = 𝑊    (14) 

 

this can be decoded on the following equation: 

 

𝐿𝑖+1,𝑗,𝑘 + 𝐿𝑖−1,𝑗,𝑘 + 𝐿𝑖,𝑗+1,𝑘 + 𝐿𝑖,𝑗−1,𝑘 + 𝐿𝑖,𝑗,𝑘+1 + 𝐿𝑖,𝑗,𝑘−1 − 6𝐿𝑖,𝑗,𝑘 =
(∆𝑥)2

𝑇
𝑊𝑖,𝑗,𝑘   

(15) 

 

the lower bound 𝐿𝑙 and the upper bound 𝐿𝑢 can be calculate using the following nonlinear programming 

problems [19]. 

 

𝐿𝑙
∗:  

 

mi n     𝐿𝑖,𝑗,𝑘
𝛼   

      (16) 

Subject to 

𝐴 (𝑇𝛼)  (𝐿)𝛼 = 𝑏𝛼  

𝑇𝑖,𝑗,𝑘
𝛼 ≤ 𝑇𝛼 ≤ 𝑇𝑖,𝑗,𝑘

𝛼   

𝑏𝑖,𝑗,𝑘
𝛼 ≤ 𝑏𝛼 ≤ 𝑏𝑖,𝑗,𝑘

𝛼   

 

𝐿𝑢
∗ :    

 

𝑚𝑎𝑥     𝐿𝑖,𝑗,𝑘
𝛼   

      (17) 

Subject to 

𝐴 (𝑇𝛼)  (𝐿)𝛼 = 𝑏𝛼  

𝑇𝑖,𝑗,𝑘
𝛼 ≤ 𝑇𝛼 ≤ 𝑇𝑖,𝑗,𝑘

𝛼   

𝑏𝑖,𝑗,𝑘
𝛼 ≤ 𝑏𝛼 ≤ 𝑏𝑖,𝑗,𝑘

𝛼   

 

The lower bound 𝑊𝑙 and the upper bound 𝑊𝑢 can be calculated using the following nonlinear 

programming problems: 

 

𝑊𝑙
∗:  

 

𝑚𝑖𝑛     𝑊𝑖,𝑗,𝑘
𝛼   

      (18) 
Subject to 

𝐴 (𝑇𝛼)  (𝐿)𝛼 = 𝑏𝛼  

𝑇𝑖,𝑗,𝑘
𝛼 ≤ 𝑇𝛼 ≤ 𝑇𝑖,𝑗,𝑘

𝛼   
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𝑏𝑖,𝑗,𝑘
𝛼 ≤ 𝑏𝛼 ≤ 𝑏𝑖,𝑗,𝑘

𝛼   

 

𝑊𝑢
∗:   

 

max     𝑊𝑖,𝑗,𝑘
𝛼   

    (19) 

Subject to 

𝐴 (𝑇𝛼)  (𝐿)𝛼 = 𝑏𝛼  

𝑇𝑖,𝑗,𝑘
𝛼 ≤ 𝑇𝛼 ≤ 𝑇𝑖,𝑗,𝑘

𝛼   

𝑏𝑖,𝑗,𝑘
𝛼 ≤ 𝑏𝛼 ≤ 𝑏𝑖,𝑗,𝑘

𝛼   

 

where 𝑇𝑖,𝑗,𝑘
𝛼   , 𝑇𝑖,𝑗,𝑘

𝛼   , 𝑏𝑖,𝑗,𝑘
𝛼  , 𝑏𝑖,𝑗,𝑘

𝛼   , are the lower and upper bounds on 𝑇𝑖,𝑗,𝑘
𝛼  , 𝑏𝑖,𝑗,𝑘

𝛼  respectively , 𝑇𝛼 is the 

vector of transmissivities at the specified 𝛼-cut level, 𝐴 (𝑇𝛼) is the matrix of head coefficients which is a 

function of 𝑇𝛼, 𝑏𝛼 is the right hand side vector containing the boundary conditions and source/sink terms and 

𝐿𝛼 is the vector of unknown heads at the specified 𝛼- level cut. Thus, to calculate fuzzy head at a specific 

node two nonlinear programming problems are considered "the lower and upper bound of the unknown head 

can be calculated by optimization the two models mathematical, and then we find the optimal solutions using 

any suitable software, is obtained. For more details about the multiobjective linear and non-linear 

programming approach, we can see [21- 26]. 

 

 

7. RESULTS AND DISCUSSIONS 

Supposing the leakage of flux into or out of aquifer and the well diameters are to be negligible, well 

losses are negligible, and the head in the well is measured from the surface of the producing layer which is 

considered as a horizontal datum. Input data for the simulation model includes fuzzy transmissivity values at 

each node, fuzzy number head boundary conditions, transmissivity of boundary nodes, the discharge rate of 

the well and the basic simulation parameters. The heads on boundaries are fuzzy number values of 50 to 60 

m. The demand is 500 m/day and the upper bound of the total water production is 2000.  

 

∆𝑥 =  ∆𝑦 =  ∆𝑧 =  10𝑚, , 𝑇 ∈ [200,300] m2/day,   
 

𝛾 =  13.511 ($/𝑤𝑒𝑙𝑙), 𝛽 =  3832 ($/𝑝𝑢𝑚𝑝), 𝛼 ∈ [0,1]  
 

Case 1 

Triangle membership function  (𝑛 =  𝑚 =  𝑙 =  2),     
We compute the lower and upper bound of head and pump rate for each node using the (16-19), and 

Set α = 0.4, using the triangle membership function and (11) to get the lower and upper bound of head and 

pump rate for each node, and 220 ≤ T ≤ 280, 52 ≤ b ≤ 58, Table 3 and Table 4 show the solution of the 

model. 

 

 
Table 3. Results of water head and pumping rate for each wall  

Water 

head (L) 

Rang of 

water head 

Rang of water 

head at α = 0.4 

Optimal 

water head 

Pump 

rate (W) 

Rang of 

pumping rate 

Rang of pumping 

rate at α = 0.4 

Optimal 

pump rate 

𝑳𝟏𝟏𝟏 [0, 50.49] [10.10, 40.40] 40.40 𝑊111  0 0 0 

𝑳𝟏𝟏𝟐 [0, 50.48] [10.10, 40.39] 40.39 𝑊112  [0, 528.76] [105.7,423.24] 423.24 

𝑳𝟏𝟐𝟏 [0, 50.48] [10.10, 40.39] 40.24 𝑊121  [0, 221.25] [44.25, 177] 177 

𝑳𝟏𝟐𝟐 [0, 50.31] [10.06, 40.2] 40.39 𝑊122  0 0 0 

𝑳𝟐𝟏𝟏 [0, 51.40] [10.28, 41.12] 41.12 𝑊211 [0, 400.44] [420.35, 480] 480 

𝑳𝟐𝟏𝟐 [0, 50.76] [10.15, 40.61] 40.61 𝑊212 0 0 0 

𝑳𝟐𝟐𝟏 [0, 50.76] [10.15, 40.61] 40.61 𝑊221 [0, 384.95] [76.99,307.96] 307.96 

𝑳𝟐𝟐𝟐 [0, 51.06] [10.21,40.85] 40.85 𝑊222 [0, 464.59] [92.9,371.68] 371.68 
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Table 4. Comparison among PSO, WCA and WCA-PSO on multiobjective optimization model for  

aquifer management 
 PSO WCA WCA-PSO 

Max sum of water head 324.16 324.16 324.16 

Max total water production 6611 6611 6611 

Minimum cost 665265.88 665265.88 665265.88 

Number of iterations 500 100 50 

CPU time (sec) 2.51 0.21 0.35 

 

 

Case 2 

Triangle membership function  ( 𝑛 =  𝑚 =  𝑙 =  3 )          
We compute the lower and upper bound of head and pump rate for each node using the (16-19), and 

Set α = 0.4, using the triangle membership function and (11) to get 220 ≤ T ≤ 280 and 52 ≤ b ≤ 58. Table 5 

and Table 6 show the solution of the model. Tables 3-6 show that the WCA-PSO hybrid algorithm 

overcomes the other optimization algorithms according to number of iterations and the CPU time for the two 
cases. It is also proving that increasing the CPU time when the size of the issue is greater and it will be 

occurs when choosing 𝑛, 𝑚 and 𝑙 larger. 

 

 

Table 5. Results of water head and pumping rate for each wall  
Water 

head (L) 

Rang of 

water head 

Rang of water 

head at α = 0.4 

Optimal 

water head 

Pump 

rate (W) 

Rang of 

pumping rate 

Rang of pumping 

rate at α = 0.4 

Optimal 

pumprate 

L111 [0,57.80] [11.57,46.28] 46.28 W111 [0,487.20] [97.44,389.7] 389.76 

L112 [0,57.70] [11.54,46.16] 46.16 W112 [0,324.80] [64.96,259.8] 259.84 

L113 [0,57.66] [11.53,46.13] 46.13 W113 [0,487.20] [97.44,389.7] 389.76 

L121 [0,57.69] [11.54,46.15] 46.15 W121 [0,324.80] [64.96,259.8] 259.84 

L122 [0,57.33] [11.47,45.86] 45.86 W122 [0,162.40] [32.48,129.9] 129.92 

L123 [0,57.15] [11.43,45.72] 45.72 W123 [0,324.80] [64.96,259.8] 259.84 

L131 [0,57.66] [11.53,46.13] 46.13 W131 [0,487.20] [97.44,389.7] 389.76 

L132 [0, 57.15] [11.43,45.72] 45.72 W132 [0,324.80] [64.96,259.8] 259.84 

L133 [0, 56.63] [11.33,45.30] 45.30 W133 [0,487.20] [97.44,389.7] 389.76 

L211 [0,57.70] [11.54,46.16] 46.16 W211 [0,324.80] [64.96,259.8] 259.84 

L212 [0,57.3] [11.47,45.86] 45.86 W212 [0,162.40] [32.48,129.9] 129.92 

L213 [0, 57.15] [11.43,45.72] 45.72 W213 [0,324.80] [64.96,259.8] 259.84 

L221 [0,57.33] [11.47,45.86] 45.86 W221 [0,162.40] [32.48,129.9] 129.92 

L222 [0,56.29] [11.26,45.03] 45.03 W222 0 0 0 

L223 [0,55.26] [11.05,44.21] 44.21 W223 [0,162.40] [32.48,129.9] 129.92 

L231 [0,57.15] [11.43,45.72] 45.72 W231 [0,324.80] [64.96,259.8] 259.84 

L232 [0,55.26] [11.05,44.21] 44.21 W232 [0,162.40] [32.48,129.9] 129.92 

L233 [0,51.48] [10.30,41.18] 41.18 W233 [0,324.80] [64.96,259.8] 259.84 

L311 [0,57.66] [11.53,46.13] 46.13 W311 [0,487.20] [97.44,389.7] 389.76 

L312 [0,57.15] [11.43,45.72] 45.72 W312 [0,324.80] [64.96,259.8] 259.84 

L313 [0,56.6] [11.33,45.30] 45.30 W313 [0,487.20] [97.44,389.7] 389.76 

L321 [0,57.15] [11.43,45.72] 45.72 W321 [0,324.80] [64.96,259.8] 259.84 

L322 [0,55.26] [11.05,44,21] 44. 21 W322 [0,162.40] [32.48,129.9] 129.92 

L323 [0, 51.48] [10.30,41.18] 41.18 W323 [0,324.80] [64.96,259.8] 259.84 

L331 [0, 56.63] [11.33,45.30] 45.30 W331 [0,487.20] [97.44,389.7] 389.76 

L332 [0,51.48] [10.30,41.18] 41.18 W332 [0,324.80] [64.96,259.8] 259.84 

L333 [0,58.00] [11.60,46.40] 46.40 W333 [0,486.20] [97.44,389.7] 389.76 

 

 

Table 6. Comparison among PSO, WCA and WCA-PSO on multiobjective optimization model for aquifer 

management  
 PSO WCA WCA-PSO 

Max sum of water heads (m3) 1218.57 1218.57 1218.57 

Max sum of water pumping  7015.68 7015.68 7015.68 

Minimum cost ($) 571291.1 571291.1 571291.1 

Number of iterations 20000 500 100 

CPU time (sec.) 50.32 1.20 0.69 

 

 

8. CONCLUSION 

In this work, we introduced a novel hybrid algorithm using water cycle algorithm (WCA) and 

particle swarm optimization (PSO). The performance of the novel hybrid algorithm WCA-PSO we evaluated 

to solve 10 benchmark problems chosen from literature. The simulation results and comparison with pure 

WCA and PSO algorithms confirmed the effectiveness of the proposed algorithm WCA-PSO for solving 
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various benchmark optimization functions. Finally, we solved the problem of managing underground water 

aquifers by WCA, PSO and the hybrid optimization WCA-PSO. The experimental results analysis and 

statistical tests proved that the hybrid algorithm WCA-PSO overcomes the other algorithms. In future work, 

we can improve this work by using the different metaheuristic algorithms with other mathematical models.  
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