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Abstract 
Path planning for the industrial robot plays an important role in the intelligent control of robot. 

Tradition strategies, including model-based methods and human taught based methods, find it is difficult to 
control manipulator intelligently and optically. Thus, it is hard to ensure the better performance and lower 
energy consumption even if the same welding task was executed repeatedly. A path planning optimization 
method was proposed to add learning ability to teaching and playback welding robot. The optimization was 
divided into the welding points sequence improvement and trajectory improvement, which was done both 
on-line and off-line. Points sequence optimization was modeled as TSP and was continuously improved by 
genetic algorithm based strategy, while the trajectory between two welding points was on-line improved by 
an try-and-error strategy where the robot try different trajectory from time to time so as to search a better 
plan. Simulation results verified that this control strategy reduced the time and energy cost as compared 
with the man-made fix-order sequence. Our method prevents the robot from the computation-intensive 
model-based control, and offers a convenient way for self-improvement on the basis of human teaching. 
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1. Introduction 

Path planning for mobile robot or robot manipulator will construct a safe and effective 
moving path in its working space to complete the given mission. Generally speaking, there will 
be several paths and the robot must select one according to certain criteria, such as  shortest 
path, minuim energy cost, or minuim time cost. Finding minimum-time planning strategies for 
robot manipulators, given actuator constraints, has been a long-standing concern in the robotics 
literature. This interest is largely motivated by the obvious relationship between execution time 
of specific tasks and productivity. In this sense, the path planning is a constrained optimization 
problem which becomes very hard to solve due to the highly nonlinear multi-input dynamics and 
strong mechanical coupling between the robot’s joints. 

Since path planning for the industrial robot plays an important role at various application 
of mobile robot, welding robot and multiple robot system, it was intensively researched during 
the past several decades. In the early years, various model-based control methods were 
proposed to provide near-minimum time solutions [1, 2] or true minimum time solutions[3, 4]. 
These control techniques include linear control, optimal control, adaptive nonlinear control, 
sliding mode control, feedback control, inverse dynamics method, singular perturbation 
approach, direct strain feedback control, quasi-tracking approach, nonlinear vibration feedback 
control [5], and linear quadratic regulator control [6], etc. In the recent several  years, the 
adaptive techniques, such as energy-based robust control [5], adaptive variable structure 
controller [7], and self-tuning adaptive control schemes [8] were proposed on the basis of a 
truncated model, ARMA mode, or linear state space models. This intelligent control approach is 
to seek a more efficient, cost-less, and even the optimal trajectory planning for a welding robot. 
These methods, however, need a large amount of calculation, and also need various 
assumptions or simplifications on the manipulator dynamics to get a robot models.  

On the other hand, teaching and playback robot can accomplish the given task after 
taught by human, so it can avoid the difficulties in obtaining an abstract model and model based 
control strategy. Therefore, a large amount of industrial robots, including most welding robots, 
adopt teaching and playback way for controlling [9]. In this way, the whole working procedure 
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will follow the teaching method without any change. This artificial sequence is usually, however, 
neither optimal nor economical, and it is also impossible to be improved by the robot itself even 
if the given task was executed repeatedly.  Therefore, the intelligent approach that enables the 
robot to seek better joints sequence and improves the performance automatically and on-line 
through repeatedly executing a same task is urgently need.  

In this paper, a path planning optimization method was proposed to augment the 
machine learning capability to the host computer of a teaching and playback welding robot that 
is used to weld various chips or integrated circuit boards by welding from a starting point to the 
ending point. The controller was improved in two steps: firstly the better welding points 
sequence was continuously constructed by genetic algorithm (GA) based on a TSP model, then 
the trajectory between two welding points was on-line improved by an try-and-error strategy 
where the robot try different trajectory from time to time so as to search a better path. For the 
fixed sequence and low efficiency problem of the traditional teaching playback robot, this paper 
gives a controller that can find a better and intelligent trajectory by self-study while free from the 
drawbacks resulting from model uncertainties and model truncations. 
 
 
2. Research Method 
2.1. Welding Procedure and Ways of Optimization 

In a real welding engineering task, the robot must make a detail plan when the parts, 
operation, resource, the number and position of welding points, etc are taken into account. The 
robot manipulator will start from the base point with initial pose, move to every next welding 
point, weld the part fixed in the clamps, and move back to the original point after welding the 
entire points. Since the limitation of operation and resources, the performance improvement is 
mainly focus on the sequence among different welding points and the trajectory between 
welding point to point (PTP). PTP means only the desternation pose, but not the trajectory itself, 
was considered while planing for the path. It is reasonable to make a obstacle-free assumption 
for the integrated circuit welding task. 

For the circuit contains hundreds, and even several hundred, welding points, the 
intuitive teach sequence from human operator is impossible at all to be optimal. And the model-
based control is also infeasible due to its complexity and computation load. To improve the 
performance of the robot controller but not to impose extra work to human operator, we 
augment the controller with machine-learning ability which enable the robot find better control 
program during the same task was repeatedly executed. 

 
2.2. Idea and Procedure of Optimization 

The optimization was divided into two parts: the welding points sequence improvement 
and trajectory improvement, which was done alternatively and both on-line and off-line. Points 
sequence optimization was modeled as TSP and was continuously improved by GA-based 
strategy, while the trajectory between two welding points was on-line improved by an try-and-
error strategy where the robot try different trajectory from time to time so as to search a better 
one. This idea can be shown in Figure 1. 

When a new mission begins, the controller construct the graph coresponding to the 
human taught procedure and then optimized it off-line by the GA approach which will be 
described detail in the next part. In the welding process, the robot will use the planned point as 
the next welding point by certain probability (1- in Figure 1), or randomly choose another not-
welded point as the next welding point in another probability ( in Figure 1). These procedure 
will probably find new better path. After the next target point was determined by either way, the 
robot will move its manipulator to weld. So it has to solve the inverse kinematics problem to 
obtain the parameters to drive the servo moters attached in every joints. For the initial path, 
these parameters was taught by human operator. But for the newly found path, the robot had to 
calculate by itself. And more often than not, there will be several groups of parameters that 
move the manipulator to the destination pose. In order to find a better trajectory, the robot will 
also follow the exist route to the target point by certain probability (1- in Figure 1), while try 

another route by another probability ( in Figure 1). In both case, whenever the new path or 

better route is found, the graph information would be updated. These process will repeated until 
all the points were welded and task was finished. Then, the GA based TSP optimizaition 
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algorithm would run one more time to get the new best point sequence so that the robot can 
used the newest  route whenever the same welding task repeated. 

 
 

 
 

Figure 1. Ideas and Procedure About the Performance Optimization for the Teaching and 
Playback Welding Robot 

 
 

2.3. Optimization to Welding Point Sequence 
2.3.1. Description of the Problem 

In the welding task, the manipulator visits every point to weld and then back to its origin 
point for the next mission. It can be modeled as tourist salesman problem (TSP) where the 
manipulator is the salesman who was required to visit every welding point only once and back to 
the first point with minimum path cost or time. 

Let we number the welding point as n,,2,1  , and denote this welding TSP problem as 

following graph G : 
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possible paths for the manipulator. Again, the initial value of A can be extracted from the 
teaching program. Generally speaking, there probably exists path during every two welding 
points since there is no constraint for the order of welding. And then, the corresponding graph 
G will be complete undirected graph. But these paths were added to A  step by step in the 

random searching process. The cost matrix C denotes the cost (such as time and energy) for 

the robot to pass the arc ),( ji , and }),(|{ AjicC ij  . 

Define the decision variable as: 
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where || S  is the number of vertex in graphG , and the second and the third in (3) mean there 

is only one input arc and only one output arc for every vertex in S , while the fourth and fifth in 
(3) ensure there is no sub-loop route to be generated. That is to say, any subset of the welding 
points must not isolate from other subsets [10]. 

Although it is NP hard problem and quite difficult to find an optimal solution, it is still 
possible for the robot to ensure that better path plan on the basis of human taught and not 
worse than the previous one. 

 
2.3.2. The GA-based Optimization Strategy 

GAs are adaptive heuristic search algorithm premised on the evolutionary ideas of 
natural selection and genetic. The basic concept of GAs is designed to simulate processes in 
natural system necessary for evolution, specifically those that follow the principles first laid down 
by Charles Darwin of survival of the fittest. As such they represent an intelligent exploitation of a 
random search within a defined search space to solve a problem.  

First pioneered by John Holland in the 60s, GAs has been widely studied, experimented 
and applied in many fields in engineering worlds. Not only does GAs provide an alternative 
method to solving problem, it consistently outperforms other traditional methods in most of the 
problems link. Many of the real world problems involved finding optimal parameters, which might 
prove difficult for traditional methods but ideal for GAs [11].  

GA was employed to optimize the construction of point sequence according to the 
situation about welding mission and the development of several intelligent algorithms to solve 
TSP problem. It was done off-line first to construct a best sequence for the current G , and then 
this sequence was amended step by step on line in the repeating execution of the same task.  

As described in section 2.2, GA is mainly used off line to find a best point route before 
executing the welding task. And in the process of welding, the robot will ether follow the planned 
point in the best sequence, or randomly select other unfinished point as the next welding point, 
both of which by some probability. In case of new path was found, the graph G will be updated 
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incrementally. After the welding mission finish, GA will search a latest best route for the possible 
next same task. 

 
2.3.3. Genetic Algorithm Description 

Typical GA requires candidate encoding, initial population generation, fitness function 
designing, genetic operators designing and controlling parameters setting. 

The most nature coding schema is permutation encoding where every chromosome is a 
string of numbers, which represents number in a sequence. E.g. the chromosome for a 9 points 
welding path planning looks like Figure 2 where chromosome A represents the robot will weld 
point 1→5→3→2→6→4→7→9→8. It should be noted that some crossover and mutation 
corrections must be made to leave the chromosome consistent (i.e. have real sequence in it). 

 
 

Chromosome A 1  5  3  2  6  4  7  9  8 
Chromosome B 8  5  6  7  2  3  1  4  9 

 

Figure 2. Example of Chromosome with Permutation Encoding 
 
 

The fitness function is defined over the genetic representation and measures the quality 
of the represented solution. The fitness function is always problem dependent. In welding robot 
here, the optimization index is energy cost or task time, as shown in (4): 

 

),(),(),( 0

1

1
10 vvi

n

k
vkvkvi PPdPPdPPdT  




           (4) 
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best cost between point iP  and jP , nji ,,1,0,  , including the starting point and the ending 

point. The fitness function is then defined in (5): 
 

Tf /1           (5) 

 
2.4. Robot Kinematics for Point to Point Movement 

Once the target point was determined, the robot should move its manipulator to the 
desired pose to prepare the welding job. A manipulator is composed of serial links which are 
affixed to each revolute or prismatic joint from the base frame through the end-effector as 
shown in Figure 3.  

 

 
 

Figure 3. Working Simulation of the Welding Robot Arms 
 
 
There are mainly two different spaces used in kinematics modelling of manipulators 

namely, Cartesian space and Quaternion space [12]. Denavit and Hartenberg showed that a 
general transformation between two joints requires four parameters, which was known as the 
Denavit-Hartenberg parameters and have become the standard for describing robot kinematics. 
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The robot kinematics is divided into forward kinematics and inverse kinematics. Forward 
kinematics will calculate the position and orientation of the end-effector in terms of the joint 
variables. It is straightforward and there is no complexity deriving the equations. Hence, there is 
always a forward kinematics solution of a manipulator. Inverse kinematics is however, going to 
tell how the robot move its arms and joints to a prescribed position with given pose. It is a much 
more difficult problem than forward kinematics. The solution of the inverse kinematics problem 
is computationally expansive and generally takes a very long time in the real time control of 
manipulators. The relationship between forward and inverse kinematics is illustrated in Figure 4. 

We use the Denavit-Hartenberg method, which is the most common method,  that uses 

four parameters to describe the robot kinematics. As shown in Figure 5, these parameters 1ia , 

 
 

 
 

Figure 4. The Schematic Representation of Forward and Inverse Kinematics 
 
 

1i , id and i  are the link length, link twist, link offset and joint angle, respectively. A 

coordinate frame is attached to each joint to determine DH parameters. iZ  axis of the 

coordinate frame is pointing along the rotary direction of the joints.  
 
 

 
 

Figure 5. Coordinate Frame Assignment for a General Manipulator 

 
 

The general transformation matrix Ti
i
1 for a single link can be obtained as follows: 
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where xR  and zR  present rotation, xD  and iQ  denote translation. The forward 

kinematics of the end-effector with respect to the base frame is determined by multiplying all of 

the Ti
i
1 matrices. 
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Tasks to be performed by a manipulator are in the Cartesian space, whereas actuators 

work in joint space. Cartesian space includes orientation matrix and position vector. However, 
joint space is represented by joint angles. The conversion of the position and orientation of a 
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manipulator end-effector from Cartesian space to joint space is called as inverse kinematics 

problem. i.e. to solve the joint n ,,, 21  given that Tn
0 is known. 

The solution of the inverse kinematics problem strictly depend on the robot structures. 
Usually the end-effector is designed to be enough flexible so that it can arrive a given position 
with different ways. Thus, the inverse kinematics solution for a manipulator whose structure 
comprises of revolute joints generally produces multiple solutions.  

 
2.5. Optimization of Point to Point Movement 

Once the target point is given, the robot move to it according to a recorded trajectory 
which was taught by human at the very begining. Since there exist multiple solutions for the 
inverse kinematics, the robot should obtain some solution from time to time. And it’s also true 
that it is computation intensive and long time process, the robot can not solve the inverse 
kinematics frequently.  

In our approach, a learning probability  was given to controll the better solution 

seeking actions. When to move to a new target, robot will follow the existing path by the 
probability 1 , and it will also solve the inverse kinematics and hope to find a better path by 

the probability  . If a better path was found, it was recorded and end-effector follows the new 

path. Otherwise, it will follow the existing path to maintain the performance not to decrease. 
Hense, it was done by self-learning on the basis human teaching program automatically. 

 
2.6. Adaptive Control of Optimization Process 

It is very intuitive and simple to control the learning procedure in the optimizing process 
by setting two learning probability  and  , which control the possibility to find better solution 

in the optimization of point sequence and in the optimization of PTP trajectory, respectively.  
In the beginning of optimization, there is only one welding point route and there is only 

one PTP moving trajectory between every two points. Thus, initial value of and   were set to 

big values to accelerate the searching process. After hundreds and thousands reparation, the 
better solution is incrementally found and the total performance trend to stabilize. If the system 
performance did not change for a long time, it maybe means our approach find the best 
controller program for the given task. In this case, learning probability  and  should be set to 

zero to make the robot follows the existing best solution. As a conclusion, it is reasonable to set 
the value of  and   proportion to the change rate of the system performance. 

Let  denote the system performance, either system energy or the task time, and 
denote the difference of system performance of the latest two generation. If the newest system 
performance becomes worse, we simply set   to zero. In our approach, the adaptive learning 

probability was adjusted as shown in (8). 
 

)/,min(

)/,min(







b

a
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Where aV and bV are the initial value of the learning probability and . 

 
 
3. Results and Analysis 

We used system energy and time performance as the evaluation criteria to optimize the 
robot path. A robot simulation model was used to weld three kinds of chips with 36, 120, and 
400 welding-points respectively, and each kind of experiment was simulated for 5000 rounds.  

According to the experimental result   2/1)1(log22  nM , the population size is set to 
40, 100, 120 for the our three circuit board situations that contains 36, 120, and 400 points, 
respectively [10]. Every chromosome is initialized as a random number sequence and an initial 
population is created from a random selection of chromosomes. The next generation of 
population is generated by the traditional roulette wheel selection method with the best 
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individual always retained. The cross over and mutation operation is fixed by special process to 
prevent illegal chromosome being producted. The value of cross over rate is 0.8, and the value 

of mutation rate is 0.005.  The initial value of the learning probability aV = 0.5 and bV  = 0.2. 

To simplify the simulation, the manipulator is abstracted as three joints that connect the 
base, upper arms, lower arms, and end-effectors as shown in Figure 3. Then, the energy index 
is defined to be the sum of absolute value of the control pulses for the step motor M1, M2 and 
M3. Here the the control pulses that  drives the link clockwise rotate is defined as positive, and a 
negative value means the pulses will drive the link to rotate counter clockwise. Table 1 gives 
some examples about the energy index in our experiment. 

The first group of experiment is focus on the energy used for welding certain type of 
chip. The average number of the energy after 5000 rounds simulation was listed in table 2. It 
can be seen from table 2 that the energy consumption has a large increment in the first 1000 
rounds, and has decrease to some extent in the second 1000 rounds. And it seems that robot 
can find the best solution in the third 1000 rounds since the energy still decrease and keep 
stable in it repeatly running in the fourth and fifth 1000 rounds.  

 
 

Table 1. Example About the Energy Index of the Welding Robot Manipulator 
Step ID M1 M2 M3 Energy 

1 30 6 -7 43 
2 100 -36 -10 146 
3 -80 0 20 100 
… … … …  

 
 

Table 2. The Results on the System Energy Index 

 the average number of the absolute value of control motor pulses 

36 120 400 
1 
1000 
2000 
3000 
4000 
5000 

645 
1425.2 
842.8 
662.6 
642.1 
639.8 

2140 
2962.8 
2434.2 
1850.7 
1848.2 
1845.4

9200 
12024.8 
9107.3 
8563.9 
8554.6 
8550.5 

 
 
The second group of experiment is focus on the time used for welding certain type of 

chip. The first row of data was obtained from the teaching procedure which serves as the 
benchmark. And also, the average time in the first 5000 rounds for the robot to finish the 
welding task is given in table 3, where we can also see the same tendency as in the energy 
case after numbers executing and self-learning. 

 
 

Table 3. The Results on the System Time Index 
 Time of welding the chip (unit: Seconds) 

36 120 400 
1 
1000 
2000 
3000 
4000 
5000 

49 
60.5 
48.3 
43.2 
43.2 
43.1 

204 
286.5 
210.6 
184.5 
183.8 
183.5 

470 
504.7 
485.3 
402.8 
400.3 
399.7 

 
 
From these experiments and simulations, we can see that it is possible for the robot to 

optimize its motion trajectory by self-study automatically, and thus decrease the energy and 
time consumption through the repetition of assigned work. Since no human tell the robot how to 
do, we can say that the robot has somewhat intelligence in trajectory plan. 
 
 

Experiments 
Number 

Welding  
points Number 

Experiments 
Number 

Welding  
points Number 
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4. Conclusion 
In this paper, the convenient path planning optimization for teaching and playback 

welding robot was proposed to enable to robot find more economical welding sequence in term 
of time and energy automatically by repeatedly doing the same welding task. 

The optimization was divided into the welding points sequence improvement and 
trajectory improvement, which was done both on-line and off-line. Points sequence optimization, 
modeled as TSP and solved by GA method, runs once before every round of the same welding 
mission, which is so-call off-line optimization. For the on-line optimizaiton, an try-and-error 
strategy was employed to select a different target point by certain probability ( in this paper) 
and to solve a better trajectory between two points by another probability (  in this paper). 

These random searching actions were controlled by the learning probability  and , which 

was also adaptive according to change rate of the system energy. 
Simulation results verified that, in contrast with the fix-sequence traditional controlling 

approach, the teaching and play back robot now can possibly decrease the time and energy 
consumption when same welding task was executed again and again. 
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