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 Arab users of social media have significantly increased, thus increasing  
the opportunities for extracting knowledge from various areas of life such as 
trade, education, psychological health services, etc. The active Arab presence 

on Twitter motivates many researchers to classify and analysis Arabic tweets 
from numerous aspects. This study aimed to explore the best performance 
scenarios in the classification of emotions conveyed through Arabic tweets. 
Hence, various experiments were conducted to investigate the effects of 
feature extraction techniques and the N-gram model on the performance of 
three supervised machine learning algorithms, which are Support Vector 
Machine (SVM), Naïve Bayes (NB), and Logistic Regression (LR).  
The general method of the experiments was based on five steps; data 
collection, preprocessing, feature extraction, emotion classification,  

and evaluation of results. To implement these experiments, a real-world 
Twitter dataset was gathered. The best result achieved by the SVM classifier 
when using a bag of words (BoW) weighting schema (with unigrams and 
bigrams or with unigrams, bigrams, and trigrams) exceeded the best 
performance results of other algorithms. 
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1. INTRODUCTION  

Social media processing in the real world includes analysis of real problems, events, and a wide 

range of applications [1-3], as well as analysis of tweets associated with the cybersecurity problems [4, 5], 

opinions mining, analysis of tweets associated with areas like automated business, education [6, 4]or other 

social issues. Usually, the concentration of these analyses is on the contents given as a text segment, such as 

tweets, emails, messages, etc. The expression of emotions is a particularly integral part of text segments in 

social media because emotions represent a universal language that all people can understand. Emotions 
represent a key factor in human nature and behaviour and are a means for individuals to express their 

perspectives and opinions, analyse events, provide assessments, and communicate with each another via 

social media messages [7]. Therefore, social media networks provide a host of information revealing users’ 

opinions and insights into current affairs, ongoing events, and human interests [8-10].  

Twitter is a massive repository of text segments [8] that are constantly being written by users. It is a 

rapidly growing micro-blogging social media platform where individuals post their emotions and opinions in 

simple expressions. Twitter publishes more than 400 million tweets daily [11], with a maximum of 280 

characters in each tweet. In January 2019, Twitter users in Saudi Arabia ranked fourth in the world, 

indicating high Arabic interaction on Twitter. The statistics are graphically illustrated in Figure 1. 
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Figure 1. Leading countries, with the number of twitter users in millions [12] 

 

 

Analysing tweets faces many difficulties due to spelling mistakes, emoticons, and slang (colloquial 

wording) [13] presented in the tweets, in addition to the type of language used and its complexity during 

processing and analysis. Therefore, these difficulties affect the classification of human emotion in  
tweets [14]. Many researchers have studied emotions in English tweets, yet few of them have focused on 

emotions in Arabic tweets [15].  

Due to the nature of the Arabic language, analysing emotions is considered a difficult challenge, 

especially during the preprocessing phase. Arabic is a complicated language for various reasons; it has an 

exceptionally complex morphology compared to other languages. It also has complex sentences and many 

vocabularies that have multiple synonyms. This causes a higher difficulty in analysing emotions written in 

Arabic than in other languages.  

Many scientists have studied the field of sentiment analysis (SA); however, few of them have 

analysed or detected emotions in tweets. Emotion analysis (EA) and characterisation are not like SA [16].  

For example, SA aims to classify a text as positive, negative, or neutral; EA is more open to elucidate 

emotions conveyed in the text, such as sadness, optimism, joy, and so on. Although just six or eight emotions 

are viewed as fundamental emotions, the number of emotions considered by EA can be much greater [17].  
The EA can introduce services for psychological health that improve the follow-up of patients with 

depression by using applications based on machine learning. Machine learning techniques are used to 

recognise, analyse, or classify human feelings, opinions, assessments, demeanours, and emotions toward 

entities such as products, administrations, people, issues, etc. [6, 18]. Therefore, the ability of machines to 

classify users’ emotions correctly should be exploited to follow up on patients’ psychological states.  

When patients answer their doctor’s question, ―How has your condition been in the last month?‖, the answer 

does not accurately reflect the psychological state of the patient. Since these answers do not provide further 

details about the patient's condition daily, they are general and lack a deep analytical vision. Consequently, a 

machine’s ability should be utilized to give the most accurate answer by classifying the patient’s tweets based 

on his or her emotions. Indeed, EA services are not limited to psychological health but can also contribute to 

the detection of chronic psychiatric illnesses such as depression [19-21]. Therefore, this research focused on 
employing a valuable approach for analysing the emotion of tweets written in Arabic to be utilised effectively 

for individuals’ psychological health. Additionally, this study reduced the challenges posed by analysing  

the Arabic language, especially in the preprocessing phase, by using Python libraries. 

Therefore, the objective of this study is to explore the best method for classifying emotions in Arabic 

tweets to understand people’s impressions of provided services or products. The study used  

the following methods: tweets collection, preprocessing, feature extraction, emotion classification, and evaluation 

of results. This paper is organized as follows: Section 2 elucidates the literature review. The methodology is 

described in Section 3, as well as Section 4 presents the experimental results whereas Section 5 shows the 

discussion and evaluation of the results. Finally, Section 6 provides conclusions and future work. 
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2. LITERATURE REVIEW 

EA is mostly based upon empirical studies that investigate how to detect emotions in texts. 

Therefore, this section provides brief reviews of related work on EA and presents recent efforts made in  

this field as well. For example, a suggested model for classifying emotions in Arabic tweets accomplished 

[14] and Waikato Environment for Knowledge Analysis (WEKA) was utilized for building this model, which 

categorised Arabic tweets into four principle feelings: sadness, joy, disgust, and anger. The accuracy of this 

model reached 80%. In another study, a rules-based approach and knowledge base were used to classify vast 

amounts of tweets into four classes of emotion based on the circumplex model. For feature extraction, part of 
speech (POS) tagging was employed to implement rules to detect emotion conveyed in tweets correctly.  

The overall accuracy of this method was 85%, which is considered a satisfactory result [22]. Furthermore,  

the first emotion intensity dataset for tweets built in [23]. The researchers utilized best-worst scaling to 

increase the consistency of annotations and to obtain fine-grained scores. They found that the emotional 

intensity of the tweets was expressed by emotion-word hashtags. Also, Badarneh et al. considered EA as a 

fine-grained approach, tackling an EA problem as a multi-label problem. They created a dataset of Arabic 

tweets that was annotated by two native Arabic speakers. Cohen’s kappa was used to measure the agreement 

between annotators.  

The annotation task was applied from reader and writer perspectives; the highest agreement in  

the writer dataset was about joy, while the highest agreement in the reader dataset was about fear [17]. 

Additionally, Jain et al. proposed a computational model of emotion switching for an intelligent agent [24]. 

Sangam, Shinde combined two classifiers SVM and ANN for sentiment classification [6], it is a general 
model, the experiments were performed on movie reviews dataset for any language, without consideration of 

complex languages such as Arabic language that has been taken into consideration in our research. 

Hasan et al. improved a system based on supervised machine learning that automatically classified 

emotion in tweets. Their method involved two phases; the first phase was an offline training task, while the 

second phase related to classifying the texts online. In the first task, the model classified emotions correctly 

in 90% of English tweets. The second phase contained two stages; the first stage was a binary classification 

of tweets with or without emotion. Then, a fine-grained emotion classification was conducted on emotional 

tweets [25]. In the other hand, the researchers in [26] collected a Twitter dataset and classified the data into 

nine emotional categories: anger, fear, disgust, guilt, joy, interest, sadness, shame, and surprise.  

These classifications were made using supervised machine learning classifiers. To find the effective classifier 

for emotion extraction of the dataset, they performed a comparative study on the performance of Artificial 
Neural Network (ANN), SVM, and NB classifiers. The researchers also separately investigated  

the performance of these classifiers with the bag of words (BoW) and bigram features. According to their 

results, the bigram feature provided better performance than the BoW feature. Furthermore, SVM performed 

better than the other two classifiers. 

Moreover, many attempts have been made for using the lexical approach to detect the strength of 

relaxation and stress expressed in messages available on social media, for example, TensiStrength system. 

This system was able to extract aberrant and direct expressions of relaxation and stress. The results indicated 

that TensiStrength worked well for some intelligent applications[27]. As well, in [28], the researchers applied 

a number of supervised algorithms for irony discovery in Arabic tweets. They used a binary classifier,  

which had high accuracy; precision reached 72.76%. 

Abdelaal et al. [29] classified Arabic tweets into five classes—sports, politics, culture, general 
topics, and technology—using ensemble methods (boosting, bagging, and stacking). These classifications 

were based on the tweets’ contents and morphological characteristics. The results confirmed that ensemble 

methods achieved better performance than single classifiers such as Naïve Bayes (NB), decision tree, and 

sequential minimal optimisation classifiers [29].  

As well, other studies compared many classification models using an English corpus [30-39, 40]. 

Also, Xu et al. proposed different sampling methods to improve the classification performance of English 

text by reducing the imbalance ratio between training classes [41]. Our study, however, explored the best 

performance scenarios in the classification of emotions conveyed through Arabic tweets. 

 

 

3. METHODOLOGY 

The methodology consisted of tweets collection, preprocessing, features engineering,  
cross-validation sampling, tweets classification (based on four emotions and using three machine learning 

algorithms), and evaluation of results. Figure 2 shows the main phases of the methodology.  
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Figure 2. The overall framework 

 

 

3.1.  Tweets collection and labelling 

The tweets were collected from Twitter using Netlytic [42], which offers a user-friendly interface 

and fast way to collect and visualize public data from various social media sources. With Netlytic, tweets 

matching a specific hashtag were collected. To collect and label tweets depending on emotion status,  

the Circumplex model, which was introduced and utilised by [43]. According to this model, all emotional 

states of humans are described in two-dimensional space. The horizontal axis represents the happiness or 

sadness of a person, while the vertical axis represents the activation of a person’s emotion. In other words, 

the model divides human emotions into four main classes: Happy-Active, Happy-Inactive, Unhappy-Active, 

and Unhappy-Inactive, as shown in Figure 3. In the present study, a list of 28 keywords representing the four 
emotion classifications of the Circumplex model was created, and these keywords were then translated to the 

Arabic language. These keywords were subsequently used to find emotional tweets containing the keywords 

as hashtags.  

 

 

 
 

Figure 3. Circumplex model [43] 
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3.2.  Preprocessing 

The Preprocessing of the Arabic content is a critical task; Arabic has an extremely complex 

morphology compared to English. Therefore, the accuracy of the classification Arabic text was affected  

by preprocessing. The main steps of task included data cleaning, tokenization, stemming, normalisation, and 

stop-word removal.  

 

3.2.1.  Data cleaning 

Data cleaning is a process that can improve the quality of the data, thereby improving the efficiency 
of machine learning algorithms in EA. Data cleaning can remove noisy words and unmeaningful content, 

resulting in reduced data size and increased data quality. The data cleaning steps of Arabic tweets included: 

a) Remove Twitter’s shortcuts, such as @username, retweet and replay. 

b) Delete special characters like @, %, #, &, ∼, etc. 

c) Remove punctuation marks, emoticons, and numbers. 

d) Delete URL links. 

e) Delete words containing only one character, such as ―ص‖ 

PyArabic library, in which a specific Arabic language library in Python provides basic functions to 

manipulate Arabic letters and text, was used. 

 

3.2.2.  Tokenization 
Tokenization is the method of dividing the given content into small pieces called tokens. In this step, 

the content of the tweets was divided into a sequence of tokens, where each token represented one or more 

words. The NLTK Python library was used to convert the tweets to tokens. 

 

3.2.3.  Normalisation 

In natural language processing, normalisation standardises the shape of the text, placing all words on 

the same footing to be processed uniformly. This task depends on the nature of letters in the language that 

will be normalised. In the Arabic language, normalisation involves the following steps: 

a) Replace some Arabic characters such as (آ ,إ ,أ) with )ى ( ,)ا( with ( ي), (ة) with (ه), and (ؤ) with (و). 

b) Delete duplicate characters. For example, (خيااااااااال) was changed to (خيال). 

c) Delete the (ــــ) that some Arabic text contains, such as (تفـــــاؤل), which was changed to (تفاؤل). 
 

3.2.4.  Stemming 

Stemming is a linguistic normalisation process in which all derived words are converted to  

their base or stem forms. In a non-Arabic language, the stem form of the words can be obtained by removing 

either prefixes or post-fixes of the derived word. To obtain the stem form of an Arabic word, the root letters 

of the word must be extracted [44]. For example, the words ―سالمات ،سلام‖ come from the root ― لنس .‖ 

Therefore, the stemming of the Arabic language is viewed as a challenging task. 

 

3.2.5.  Stop-word removal  

Removing stop words is a typical step in preprocessing. Stop words are usually the most common 

words in languages. These words do not provide important meaning; for example, conjunctions, articles, and 

relational words are stop words. Removing stop words helps in recognizing the most important words.  
The Arabic stop words used in this study were defined in a list available in [45-47]. This was with the 

exception of negations, which were deleted. 

 

3.3.  Feature extraction 

Features engineering refers to generating metrics for the analysis process based on the dataset.  

Most feature engineering techniques create a large number of features that represent the data. However, some 

of these features are irrelevant and result in degrading the performance of text classifiers. Feature selection 

techniques choose a subset of a total number of features to eliminate redundant features [48]. After features 

are selected, they must be extracted to numerical form for the analysis. These features can then be input to 

the machine learning algorithms. Using a convenient feature extraction technique can improve  

the performance of text classifiers [49, 50]. 
Many models have been used for feature extraction, such as BoW, term frequency-inverse document 

frequency (TF-IDF), and N-gram models. The BoW was found to be the most common model used in the 

literature. In the BoW model, tweets are represented as vectors containing words. In the BoW model,  

the order of the words in the sentence is ignored and words frequency is counted. As another model, TF-IDF 

represents a normalised count of the words in which the count of each word is divided by the number  

Figure 2: Circumplex Model[25]  

  



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Exploration of the best performance method of emotions classification … (Mohammed Abdullah Al-Hagery) 

1015 

of tweets in which the word appears. Finally, N-gram models aim to break text into a sequence of words depending 

on a specified range. For instance, N-gram models spelt each word as a unique gram to form Unigram feature. 

In this study, TF-IDF and BoW were used with six ranges of the N-gram model to investigate  

the best scenarios for the collected dataset. The used ranges are shown in Table 1. A single word was 

considered a unigram; bigrams represented two consecutive words, and trigrams were three successive 

words. Consequently, the words of texts were separated according to the selected ranges of N-gram features. 

 

3.4.  Algorithm selection for emotion classification 

Since EA is a type of text classification, the most common text classification algorithms used were 

the NB, SVM, and LR classifiers. These algorithms were trained using a different range of N-gram features, 
depending on BoW and TF-IDF. The NB and LR are probabilistic classifiers that provide a probability 

distribution over output categories. On the other hand, SVM does not provide probabilistic values. Instead,  

it provides return decision scores, which are proportional to the distance from the separating hyperplane.  

The results generated according to the following steps: 

a) Use the N-gram model to produce six combinations of N-gram features, as illustrated in Table 1. 

b) Create BoW features with six ranges of N-gram features. 

c) Construct a TF-IDF feature with six ranges of N-gram features. 

d) Generate a test set and training set using cross-validation. 

e) Fit NB, SVM, and LR algorithms with all previous features’ forms. 

f) Evaluate the algorithm’s accuracy using various performance measures. 

 
 

Table 1. Ranges of N-gram features in the experiments 
# N-grams 

1 Unigram 

2 Bigrams 

3 Trigrams 

4 Unigrams, bigrams 

5 Bigrams, trigrams 

6 Unigram, bigrams, trigrams 

 

 

4. THE EXPERIMENTAL RESULTS 

Before the data analysis, the collected dataset contained 4000 tweets. After data cleaning and 

normalisation, 3171 tweets were included. The distribution of classes in the collected dataset is shown in 
Figure 4. Stemming reduced the features by up to 14%. In addition, stop-word removal reduced features as 

much as stemming did.  

 

 

 
 

Figure 4. The distribution of emotional classes in the dataset 

 

 

To analyse the impact of the feature forms on the performance of the machine learning algorithms, 

approximately 37 experiments conducted in different scenarios to determine the best situation of  

the algorithms’ performance, as shown in Table 2. The results of the experiments were subjected to 

evaluation for a comparative analysis of the performance of the classification algorithms. The accuracy, 
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precision, recall, and F1-score were used to define the best algorithm and feature construction method. 

Accuracy was a ratio of correctly classified tweets according to all tweets. Precision represented  

the percentage of the relevant instances according to actual classes, and recall was the rate of the total 

relevant results correctly predicted. The F1-score revealed the harmonic mean of precision and recall. 

 

 

Table 2. The experimental results 
The Experiments Results Validation 

# Classifier N-gram Feature extraction 

technique 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

1 SVM Unigram BoW 

 

82.27 83.47 82.27 82.72 

2 Bigrams 34.31 53.65 34.31 53.65 

3 Trigrams 30.55 59.97 30.55 15.40 

4 Unigrams, bigrams 82.43 83.59 82.43 82.87 

5 Bigrams, trigrams 34.31 53.65 34.31 22.91 

6 Unigram, bigrams, trigrams 82.43 83.59 82.43 82.87 

7 NB Unigram 74.07 73.05 74.07 73.21 

8 Bigrams 34.72 51.29 34.72 25.77 

9 Trigrams 30.77 59.99 30.77 15.85 

10 Unigrams, bigrams 73.79 72.87 73.79 73.10 

11 Bigrams, trigrams 34.56 51.03 34.56 25.52 

12 Unigram, bigrams, trigrams 73.60 72.82 73.60 73.07 

13 LR Unigram 82.08 82.93 82.08 82.44 

14 Bigrams 34.81 50.86 34.81 24.80 

15 Trigrams 30.77 59.99 30.77 15.85 

16 Unigrams, bigrams 82.21 83.05 82.21 82.57 

17 Bigrams, trigrams 34.81 50.86 34.81 24.80 

18 Unigram, bigrams, trigrams 82.21 83.06 82.21 82.57 

19 SVM Unigram TF-IDF 

 

77.41 78.70 77.42 77.33 

20 Bigrams 34.19 52.50 34.18 22.83 

21 Trigrams 30.56 59.97 30.56 15.40 

22 Unigrams, bigrams 77.14 78.42 77.14 77.02 

23 Bigrams, trigrams 34.22 52.69 34.22 22.84 

24 Unigram, bigrams, trigrams 77.17 78.48 77.17 77.05 

25 NB Unigram 70.55 69.75 70.55 68.65 

26 Bigrams 34.94 51.43 34.94 25.79 

27 Trigrams 30.78 59.99 30.79 15.85 

28 Unigrams, bigrams 70.99 70.16 70.98 69.16 

29 Bigrams, trigrams 34.88 51.32 34.88 25.64 

30 Unigram, bigrams, trigrams 70.89 70.11 70.89 69.08 

31 LR Unigram 80.60 81.08 80.61 80.82 

32 Bigrams 34.75 50.32 34.52 24.78 

33 Trigrams 30.78 59.99 30.78 15.85 

34 Unigrams, bigrams 80.89 81.36 80.89 81.1 

35 Bigrams, trigrams 34.79 50.84 34.78 24.84 

36 Unigram, bigrams, trigrams 80.86 81.33 80.86 81.06 

 

 

5. RESULTS DISCUSSION 

Based on the experiments, the algorithms were compared and evaluated vertically, with different 

feature forms, and horizontally, with each other. It was observed that when a unigram was present in N-gram 

combinations, this produced better results compared to groups that did not include a unigram as a feature. 

Generally, in terms of algorithms, the results of SVM somewhat surpassed the results of other algorithms  

in both accuracy and F1-scores. On the other hand, the NB algorithm produced the worst results for any 

circumstance of features. Further analysis showed that each algorithm required appropriate features in order 

to perform its best performance.  

Figure 5 shows that SVM and LR reported their best performance with (Unigrams, bigrams)  

or (Unigrams, bigrams, trigrams) and BoW features. However, NB showed the greatest performance with 

unigram and BoW features. In the case of SVM, the best accuracy and F1-scores were produced with any  

N-gram combination that contained unigrams. The highest accuracy and F1-score of SVM were 82.43 and 
82.72, respectively; these were obtained with BoW and (Unigrams, bigrams) or (Unigram, bigrams, trigrams) 

as features combinations. On the other hand, trigrams negatively affected the performance of SVM in all 

feature extraction techniques used. The NB classifier achieved the best results with BoW and unigram 

features, for which the accuracy and F1-score were 74.07 and 73.21, respectively. As in the performance of 

SVM, the accuracy and F1-scores significantly dropped with trigrams in both BoW and TF-IDF. The impact 

of N-gram features and feature extraction on LR was similar to SVM. The best accuracy for this method was 
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73.79 with (Unigrams, bigrams) in BoW, and the highest F1-score achieved was 73.07 in BoW with a 

(Unigrams, bigrams, trigrams) feature combination. In comparing the performance and the algorithms  

in features extraction angle, the best performance in BoW was achieved by SVM, which reached 82.43  

in accuracy and 82.87 in F1-score. The LR algorithm was second, followed by NB, which reached  

an accuracy and F1-score of 30.77 and 15.85, respectively. Based on the features extraction techniques 

applied in the experiments, the results of the three algorithms working with BoW were better than the results 

with TF-IDF. In contrast, the LR algorithm provided a distinct performance with TF-IDF compared to other 

algorithms. For TF-IDF, the accuracy reached a peak of 80.98 for LR, and the F1-score reached 81.6, which 

was considered the best performance. The worst performance in TF-IDF was caused by NB, where  

the accuracy was 30.78 and F1-score was 15.85.  
 

 

 
 
 

 
 

Figure 5. The accuracy and F1-score for each N-gram by feature extraction techniques vs. classifiers 
 

 

As seen in Table 2, feature extraction methods affect the performance of the classifiers. Thus,  

using good classifiers with non-convenient feature methods produces poor results. For instance, the accuracy 

of SVM with BoW and bigrams reached 30.55%. The impacts of feature methods on the performance of the 

classifiers have been examined by different researchers. Azim et al. [26] compared the performance of SVM, 

NB, and ANN with BoW and bigrams, separately. Their best result was found with SVM with bigrams,  

for which accuracy was 77%. Similarly, the present study’s experiments showed that SVM could reach an 

accuracy of 82% using BoW and (Unigrams, bigrams). Moreover, Abdullah et al. [14] used only bigrams to 
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detect emotions in Arabic tweets. In their work, the SVM classifier with TF-IDF performed better than other 

methods; its accuracy reached 80.6%. The result of the SVM classifier in the present study was better than in 

the study accomplished by [14] when using BoW and any combination of N-gram that contained unigrams. 

Therefore, researchers should conduct multiple experiments with BoW, because it was more useful than  

TF-IDF for detecting emotions in Arabic tweets. The best performance results are shown in Figure 6.  

 

 

 
 

Figure 6. The best performance scenarios 

 

 

6. CONCLUSIONS AND FUTURE WORK 

EA is a text classification system that aims to identify human feeling conveyed through texts.  

In recent years, Arab users have expressed their emotions and attitudes on many of the issues raised through 

the Twitter platform. Therefore, this study focused on the most popular classification algorithms such as 
SVM, NB, and LR and applied them to a tweet’s dataset as short text content. During the experiments,  

the impact of BoW and TF-IDF, as well as N-gram features, on these algorithms were investigated to 

determine the best method. The results showed that BoW performed better than TF-IDF in all cases. 

Moreover, the unigram feature from the N-gram model outperformed any combination of N-gram features 

that excluded the unigram feature. Among the different combinations of features and algorithms, SVM and 

LR achieved the best performance with (Unigrams, bigrams) or (Unigrams, bigrams, trigrams) and BoW 

features. NB achieved the lowest performance in all conducted experiments. 

The best result was achieved by the SVM classifier when using BoW with unigrams and bigrams or 

unigrams, bigrams, and trigrams for classifying the tweets written in Arabic as a complex language. 

According to these results, Arabic psychiatric clinics can explore the emotional states of their patients 

automatically by using the best model, as shown in Figure 6. Additionally, the analysis results could provide 
valuable knowledge for many applications in different areas. For example, the findings could provide 

valuable knowledge for the economic, education, security sectors and other sectors through knowledge 

extraction to support decision-making. Furthermore, the results could provide a method to explore  

the opinions and impressions of people written in Arabic about services provided or products offered,  

there by increasing sales and profits by improving the quality of the products or of the services provided to 

customers. Many methods could be used to extend this research in the future. One of them could be capturing 

emoticons, which are usually used to convey the writer’s emotions or intended tone. Furthermore, a study 

with more focus on the emotion classes in a specific field would provide a clearer picture of people’s 

emotional states, opinions, and suggestions based on the best classifier identified by this present study. 

Advanced research should be done to illuminate why some features work well with some algorithms and 

poorly with others. 
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