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Abstract 
Pedestal looseness and rub-impact are two important faults in rotating machinery. Once the 

Pedestal looseness is developed in a rotor system, the rotor is more likely to make contact with stator 
under tight clearance conditions. Due to the presence of both Pedestal looseness and rub-impact, the 
whole system becomes highly nonlinear and instability. The present study is aimed to simulate a chaotic 
system of the nonlinear rotor system and the system can adaptively be converted to normal working state 
under the circumstance of the chaotic state occasioned by outside perturbation for the complicated chaotic 
system. The nonlinear dynamic equations of rotor-bearing system with coupling faults of pedestal 
looseness and rub-impact force are derived and a multi-parameter adaptive control algorithm is given. As a 
result, it is found that those systems possess various nonlinear dynamical inherences. The numerical 
results also show that the parametric adaptive control method is appropriate to those rotor-bearing 
systems, outside interference under the state of chaos arising from the situation can be adaptive to adjust 
to normal working condition. It has strongly control capability of stability. The theoretical and practical idea 
for controlling rotor–bearing systems and optimizing their operation can be more precise. 
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1. Introduction 
Rotating machinery is commonly used in our society for a wide range of energy 

conversion applications, such as electric power, mechanical power, fluid pumping, propulsion, 
ventilation and cooling, etc [1]. It is well known that the failure of a mechanical system is always 
accompanied with the changes from linear or weak nonlinear to strong nonlinear dynamics. In 
rotating machinery in which faults appear, for example, one generally finds evidence of a 
complicated nonlinear vibrating system. Chaotic motion can be found in rotating machinery with 
rotor-to-stator rub, loose pedestal, an unstable oil film and a cracked rotor [2–6].  

The rotor-to-stator impact causes changes in the system force balance and its dynamic 
behavior. Many causes may exist for the occurrence of the rub-impact in rotating machinery, 
which include rotor vibrations due to imbalance, displacements of the rotor centerline due to 
rotor misalignment, rotor permanent bow, or fluid-related constant radial forces. Therefore a 
number of articles on this topic have been published to analyze the nonlinear dynamics of rub-
impact rotor. Erich [7] studied the effects of chaos and subcritical superharmonic response in a 
system with rotor to stator contact. Real data of an aero engine were supplied to compare with 
numerical simulation. Zhang et al. [8] analyzed the rub–impact caused by geometric asymmetry 
between the rotor and stator, and studied the grazing phenomenon of the single point rubbing in 
detail. Dai et al. [9] designed an experiment of rotor/stop rubbing, and analyzed its vibration 
responses. Chu and Zhang [10] investigated the non-linear vibration characteristics of a rub-
impact Jeffcott rotor. They also found that when the rotating speed increase, the grazing 
bifurcation, the quasi-periodic motion and chaotic motion occur after the rub-impact. 

Pedestal looseness is one of the common faults that occur in rotating machinery. It is 
usually caused by the poor quality of installation or long period of vibration of the machine. 
Under the action of the imbalance force, the rotor system with pedestal looseness will have a 
periodic beating. This will generally lead to a change in stiffness of the system and the impact 
effect. Therefore, the system will often show very complicated vibration phenomenon. The 
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pedestal looseness will occur for long-term vibration of rotating machinery and it will cause 
piecewise nonlinear characteristic of the pedestal support [11-13]. The rotor systems with 
loosing foundation were studied by several investigators. Goldman and Muszynska [14] 
performed experimental, analytical and numerical investigations on the unbalance response of a 
rotating machine with one loose pedestal. The model was simplified as a vibrating system with 
bi-linear form. Synchronous and subsynchronous fractional components of the response were 
found. In a subsequent paper [15], they discussed the chaotic behavior of the system based on 
the bi-linear model. 

As the predictability of chaos, it is very difficult to control the observed error signal 
during a period of given time to zero by the common method. The statistical prediction 
technology is taken up to control the chaotic system by Hubler [16]. Ho M. C. [17] studied the 
generalized synchronization between driving system and respond system by approximately 
steps, but this method can’t estimate all the parameters of driving system. Reference [18] 
represented a method to control the chaos system, but it is linear synchronization method and 
can’t control the chaos system accurately. Guan xinping [19] achieved the synchronization of 
Ameodo system by nonlinear state feedback.The references listed above adopted the nonlinear 
method or adaptive control method, but they did not take account of parameter excitation of the 
chaos system at the same time.  

In this paper, a dynamic model of the rotor-bearing system with coupling faults is set up 
and a multi-parameter adaptive control algorithm is given. The simulation results show that the 
methodology is appropriate to the rotor and stator system, outside interference under the state 
of chaos arising from the situation can be adaptive to adjust to normal working condition. The 
results are helpful for fault diagnoses, dynamic design, and security running of rotor-bearing 
systems. 
 
 
2. Model and Differential Equation of Rotor-Bearing Systems with the Pedestal 
Looseness and Rub-Impact Force 

Model of the rotor-bearing systems with the pedestal looseness and rub-impact force 
are shown as Figure1. 

 

 
Figure 1. Mechanical Model of Rotor-Bearing Systems with the Pedestal Looseness 

and Rub-Impact Force 
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Shaft coupling connects the motor and rotor. The system mass is equivalently 
concentrated on the center of every disc and bearing support respectively. The torsional 
vibration and gyro moment are neglected and only the lateral vibration of system is considered. 
Both ends of rotor are supported by journal bearings with symmetrical structures. The motion 
differential equation of the rotor-bearing   system considering the pedestal looseness and rub-
impact force is: 
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the equation (1) may change into: 
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3. Parametric Adaptive Control of Multi-Parametric Non-Autonomous Chaotic Systems 

Consider the general non-autonomous systems: 
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where the system state vector nRx , time Rt , parameter mRμ , F: 
nmn RRRR  . 

Suppose parameter μ  is linear with respect to F, then equation (3) can be written as 
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where  , kψ : nn RRR   , )m,,2,1( k  , ),,( m1  μ  is parameter vector, these control 

parameter determine the asymptotic behavior of the orbits. The objective of control is to adjust 
the parameter vector to the predicted value. The parameter value variation can be distinguished 
through the global dynamic system. Namely, depend on deviation relationship between the 
system variable x and reference model variable y, the variation of parameter can be controlled 
[20]. Consider the reference model: 
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G  is the nonlinear function of derivation of signal errors. The difficult point of the equation (6) 
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For effective controlling the more complicated system, the output variable )(tx  in 

equation (3) is fed back to the system (5). Then, we get the coupled equations from system (3) 
and system (5): 
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where nT
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When 1110.01  , 0666.01  , 5.0  the system presents chaos state, as shown in Figure 2. 

 
 

 

 

Figure 2. Chaos of the System Before Controlling 
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Assume that the parameters

1 ,
1 ,  in the system are deviated from the desired values 

( 8877.01  , 3996.01  , 2 ) while the system is perturbed. Suppose that the parameters are 

changed to 1110.01  , 0666.01  , 5.0 , after the perturbation. At this time, the system is in a 

chaos state. Now we control the parameters in the system (12) and (13) to feed back to the 
desired values so that the perturbed system in the chaos state is fed back to the normal working 
state. We obtain the following equations with the adaptive control law:  
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Figure 3 is single-cycle state after the adaptive control, Figure 4~ Figure 6 are system 

entering chaos state by disturbing, after adaptive control, the system enters into normal working 
state. 

 

            
 

 
 

        
 
 

 
 
5. Conclusions 

From the above computations and analyses, it can be observed that in the rotor system, 
the nonlinear response will evolve from one type of motion to another under grazing bifurcation. 
The conclusions drawn from the study can be summarized as follows: 

(1) Nonlinear dynamic model of the nonlinear rotor-bearing system with coupling faults of 
pedestal looseness and rub-impact was set up. 

(2) The multi-parametric adaptive control method suggested in the paper is successfully 
applied to simulate a chaotic system of the nonlinear rubbing rotor system and the 
system can adaptively be converted to normal working state under the circumstance of 
the chaos state occasioned by outside perturbation for the multi-parametric non-
autonomous complicated chaos system.  

(3) The parametric adaptive control law given in the paper has strongly control capability of 
stability. 
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Figure 4. Parameter 1  Reach its Target 

Value 1 =0.8877

Figure 5. Parameter 
1 Reach its Target 

Value 
1 =0.3996 

Figure 6. Parameter  Reach its Target 
Value =2

Figure 3. Normal Track of the System 
After Controlling 
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