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 Automatic speech recognition (ASR) is a technology that allows a computer 
and mobile device to recognize and translate spoken language into text. ASR 

systems often produce poor accuracy for the noisy speech signal. Therefore, 
this research proposed an ensemble technique that does not rely on a single 
filter for perfect noise reduction but incorporates information from multiple 
noise reduction filters to improve the final ASR accuracy. The main factor of 
this technique is the generation of K-copies of the speech signal using three 
noise reduction filters. The speech features of these copies differ slightly in 
order to extract different texts from them when processed by the ASR 
system. Thus, the best among these texts can be elected as final ASR output. 

The ensemble technique was compared with three related current noise 
reduction techniques in terms of CER and WER. The test results were 
encouraging and showed a relatively decreased by 16.61% and 11.54% on 
CER and WER compared with the best current technique. ASR field will 
benefit from the contribution of this research to increase the recognition 
accuracy of a human speech in the presence of background noise.  
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1. INTRODUCTION 

The main objective of ASR research is to build a system to convert speech signals to text [1]. In 

recent years, speech to text technology began to change the manner in which we live and became one of the 

basic means for humans to communicate with certain devices. Hence, many applications have been created in 

which speech to text technology plays an essential role [2-3]. These applications provide services, such as 

voice search, speech translation, personal assistant, and gaming [4-5]. The ASR systems comprise of four 

conceptually distinct stages: signal processing, feature extraction, acoustic model, and N-gram language 

model [6-7]. The signal processing enhances the speech signal by eliminating noise and making it more 

suitable for recognition. The feature extraction stage identifies important features in the speech signal and 

extracts them. The acoustic model measures a score for all characters in order to classify them using standard 
features. The N-gram language model measures the probability of a sequence of words to validate the 

resulted sentences.  

Most ASR applications perform acceptably in clean environments [8]. However, they do not work 

well in the presence of noise [9-11]. Noise as a term refers to the unwanted elements present in speech 

signals. The noise of any type makes the process of ASR harder. For instance, identifying the speech of a 

person in a silent room is much easier than identifying the speech in a noisy environment. Thus, several 

researchers reported that ASR accuracy is still low for a degraded speech signal [12-14]. The effect of 
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different noise types on speech recognition varies significantly according to the source of the noise [15]. 

However, the environment of the audio signals is the main cause of noise and contrast in the speech  

signal [16]. The noise types may result from hundreds of sources, such as microphone quality, speaker 

characteristics, background sounds, and dialect differences [4]. Furthermore, various types of noise give 

different levels of errors, making it difficult to implement a filter technique for each type of noise or training 

the ASR on them [14]. Thus, the more efficient is the design of a general technique that can be more accurate 

for speech recognition in the presence of noise. Figure 1 presents four types of speech signals.  

 
 

 
 

Figure 1. Four types of speech signals 

 
 

In Figure 1, the four types of spectrograms show that the enhanced speech signal (d) is not exactly 

like the clean speech signal (a). This is because noise estimation (c) presented by one of the speech 

enhancement techniques does not exactly match the noise signal due to the noise is unpredictable [17]. For 

example, when riding in a car and listening to the friend's speech, the noise from the car increases and 

decreases disproportionately as the car changes its speed while the speech from the friend remains constant. 

Therefore, it is difficult to categorize the input signal as either noise or speech. Ensemble techniques are used 

effectively in a variety of domains such as optical character recognition to produce high accuracy when using 

noisy testing datasets [18-19]. Therefore, this research modified this technique to be suitable for the 

automatic speech recognition domain. The main factor of this technique is the generation of K-copies of the 

speech signal using three noise reduction filters. The best speech features for these copies can then be 

selected as final ASR features [19].  
The remainder of this research was prepared in four sections: the current and older studies were 

formulated in Section 2 while the implementation of the proposed technique was explained in Section 3. In 

Section 4, the results of the proposed technique evaluation were reported. Finally, the conclusion with a brief 

discussion and future work of this research were described in Section 5. 

 

 

2. RELATED WORK 

Researchers have proposed several techniques that provide a variety of solutions to deal with the 

noisy speech signal. In [15], the ASR system was designed to recognize the speech of a speaker in a noisy 

environment. The ASR system consists of three sequentially connected components to remove the noise of a 

speech signal. The first component was used to maintain the speech signal coming from the speaker's 
direction and to ignore any noise coming from another direction. The second component was used to deal 

with any noise associated with the speech signal. The last component improved ASR recognition by mapping 

of spectral features to standard features. Experimental results of different settings of the ASR system show 

that integrating the three components could increase the ASR accuracy.  

In [12], the ASR system was created and trained using electroencephalography features to increase 

the recognition accuracy in the absence and presence of the noisy environment. The electroencephalography 

features can be measured by recording the electrical signals that occur in the human brain. Based on this 
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technology, a set of speech signals features were identified that could be used for better representation of 

audio signals. These electroencephalography features have been determined using a deep learning model. 

The ASR system has been tested with a combination of acoustic and electroencephalography features. The 

experimental results show that using electroencephalography features could help the accuracy of speech 

recognition systems. However, the testing dataset was small, which consist of the four English words ’no’, 

’yes’, ’right’, ’left’ and five English vowels.  

In [13], the ASR model was designed to include an additional subsystem to correct the resulting 

errors in speech recognition. The subsystem measured the context of the phrase using a neural network that 

trained from a large corpus for better choosing between different possibilities as well as re-introduces unseen 

phrases in the corpus. Hence, it could provide corrections for ASR errors resulted from noisy environments. 
Experimental results showed that the ASR model could improve the recognition accuracy (1) by scoring the 

lattices, (2) by correcting words pruned from the lattices, and (3) by generating candidates for any word not 

shown in the dictionary. 

In [20], the authors designed the ASR system based on neural networks and deep learning of 

unsupervised data to improve recognition accuracy in noisy environments. This ASR system integrates 

residual learning and batch normalization, showing more robustness than other existing works. It also 

focused on training using large and different types of noises. Furthermore, the system processes the speech 

signal several times in which each stage corrects the errors of the previous stage. In this way, the recognition 

accuracy for each stage is increased. The evaluation process of the system was achieved using clean and 

noisy speech signals. Experimental results showed that using neural networks and deep learning could reduce 

the word error rate by 5.67%. 
In [9], the authors claimed that traditional neural networks that use speech classification are 

sensitive to various noisy conditions. Therefore, they proposed a new model for the neural network to handle 

uncertainty data. They suggested that speech signals were considered as input signal and their noise was 

modeled as uncertainty data. Uncertainty data was calculated for specific frequency points of speech 

spectrogram to produce the uncertainty matrix. Then, two parallel paths based classification model is 

suggested. The first path used a speech spectrogram as input while the second path used uncertainty matrix. 

The two paths outputs were joined to calculate the final output of the ASR classifier. The proposed technique 

has been compared with traditional neural networks using isolated words. The experimental results showed 

that the proposed technique achieves recognition accuracy of 85% in noisy environments. 

In [17], the authors used a variant of several deep neural networks (SDNN) based speech 

recognition techniques. This technique estimates the desired speech spectrum as an average of multiple 

SDNN outputs. The weights were measured by an additional network. The multiple SDNNs and the 
additional network are trained together. Experiments have been conducted using two and four SDNNs that 

trained on the large corpus with various noise types. The proposed technique has been compared with a 

single DNN based ASR system. The evaluation metrics were non-standard, which are Short-Term Objective 

Intelligibility and Perceptual Evaluation of Speech Quality. The test results indicated that the proposed 

technique was better than the baseline scheme in both clean and noisy environments. The improvement was 

0.07 and 0.04 in Perceptual Evaluation of Speech Quality compared to single DNN for clean and noisy 

speech signals respectively. 

Related work of this research shows that various efforts and techniques were achieved for 

recognizing noisy speech signal. However, most of them did not involve ensemble techniques as a 

mechanism to correct ASR errors. Hence, the contribution of this research is to design and evaluate whether 

ensemble techniques can make a difference in improving ASR systems. Furthermore, any improvements in 
the ASR field can increase the overall performance of speech recognition technology. 

 

 

3. PROPOSED TECHNIQUE 

As mentioned previously, since the noise sources can vary widely and the conditions of speech 

surrounding are variable and change over time, it is not possible to design a filter technique for each type of 

noise. Hence, this research proposes the ensemble technique that can be more accurate for speech 

recognition. The main idea of this technique is that instead of relying on anyone imperfect noise reduction 

filter, the proposed technique incorporates information from multiple noise reduction filters of the same 

speech signal to improve ASR output [21]. The proposed technique suggested that different noise reduction 

filters potentially offered complementary information about the phonemes to be classified which could be 

harnessed to increase the performance of the ASR system. Figure 2 presents a diagram to illustrate the 
proposed ensemble technique. 
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Figure 2. The Diagram of the proposed ensemble technique 

 

 

In Figure 2, three main steps are included in the proposed ensemble technique. In Step1, the 

ensemble technique is used to create 3-copies of the input speech signal by using three different noise 

reduction filters: Spectral Subtraction, Wiener filter, and Gammatone filter. These three filters were chosen 

because they are considered the best in removing noise from the signal [14]. The generated copies are similar 

but non-identical. Hence, the small difference between generated copies can produce different ASR outputs 

and then choose the best among them. The details of noise reduction filters are in the following paragraphs. 

(Filter 1) Spectral subtraction is one of the basic algorithms proposed for removing the noise in an 

audio signal [22]. In this algorithm, a clean signal of noisy speech can be resulted from removing the 
estimation of noise from the input audio signal. The noise is estimated during non-speech areas, which are 

gaps in the signal that contains only noise. The spectral subtraction model in the time domain is  

expressed by: 

 

d(m, k) = s(m, k) - n(m, k) (1) 

 

where s(m, k), d(m, k), and n(m, k) represent the signals of the input speech, the desired speech, and 

the noise estimation respectively. The variables m and k refer to the discrete-time and the frame number 

respectively [22]. Assuming the speech signal and noise are produced by independent sources for most  

real-world cases. In the frequency domain, (1) can be represented as: 

 
S(w, k)= D(w, k)+N(w, k) (2) 

 

where the variables S(w, k), D(w, k) and N(w, k) are the short time discrete Fourier transforms of 

noisy speech, desired signal, and noise respectively, and the variable w represents the discrete frequency 

index of the frames. The first step in spectral subtraction is to divide the noisy speech signal s(m, k) into 

overlapping frames. The frame length is usually equal to 0.020s when an audio file is sampled to 16 kHz. 

Hence, each frame has samples of 400 per second. Since the overlap between frames is 50%, then the frame-

0, frame-1, and frame-3 start at samples 0, 200, and 400 respectively and so on. Since the first few frames of 

an input signal consisting of silence, they should be good samples of the noise spectrum. Consequently, the 

mean of these first few frames can be taken to estimate the noise signal. Finally, the clean signal of noisy 

speech can be produced from subtracting the noise estimation from the input speech signal [22]. 

(Filter 2) The Wiener filter is the most important technique for noise reduction and has been used in 
various signal enhancement applications [23]. The basic idea of this technique is to measure the estimation of 

the desired signal from that degraded by noise signal. This could be achieved by calculating the Mean Square 

Error using (3) assuming known the desired signal 𝑃𝑑(𝑤, 𝑘) and the input signal 𝑃𝑛(𝑤, 𝑘) and then trying 

to minimize it. The filter transfer function of the frequency field is expressed by: 

 

𝐻(𝑤, 𝑘) =
𝑃𝑑(𝑤,𝑘)

𝑃𝑑(𝑤,𝑘)+𝑃𝑛(𝑤,𝑘) 
 (3) 

 

where H(ω, k) is the Wiener filter transfer function, Pd(ω, k) is the spectrum of the desired signal, 

Pn(ω, k) is the spectrum of the noise, k is the frame number, and the variable w represents the discrete 

frequency index of the frames. The desired signal estimation in the frequency field using this filter is 

expressed by: 
 

𝑑^(𝑤) = ∑ ℎ𝑘𝑠(𝑤)∞
𝑘=−∞  (4) 
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where d^(w) is the estimation of the desired speech signal, s(w) is the input speech signal, and hk is 

the Wiener filter coefficients [23]. 

(Filter 3) The Gammatone filter was designed to express the performance of the human auditory 

system and to improve the automatic speech recognition system [14, 24]. It is a linear filter that uses 

logarithmically spaced defined in the impulse response time, which is measured by the product of a 

sinusoidal tone and gamma distribution. Hence, the mathematical expression of this filter is shown in (5). 

 

𝑟(𝑡) = 𝑐𝑡𝑛−1𝑒−2𝜋𝑏𝑡cos (2𝜋𝑓𝑡 + 𝜃) (5) 
 

where r(t) represents the Gammatone filter impulse response, the symbols t, c, n, f, θ, and b refer to 

the time, the amplitude, the filter's order, the frequency, the phase of the carrier, and the filter's bandwidth 

respectively [14].  
Figure 2 also shows that in Step 2 of the proposed technique, the 3-copies of the input speech signal 

are processed by three ASR systems in parallel to create different 3-ASR outputs. Figure 3 shows an example 

of different 3-ASR outputs.  

 

 

 
 

Figure 3. An Example of different 3-ASR outputs 
 

 

From Figure 3, it can be seen that the number of characters of ASR output is different. This causes 

vertical overlap between words of the ASR resulting texts. Hence, In Step 3 of the proposed technique, there 

is a need to match each letter with an equivalent in other ASR outputs, which is called an alignment task. The 

alignment task has been performed in this research by using the Smith-Waterman algorithm. After the 

alignment task, a voting task will select the best character of each column to produce a final ASR output. For 

the voting task, this research uses the recognition confidence value returned by the ASR engine to select the 

best character of each column. The recognition confidence value is a metric calculated by evaluating how 

close the features detected in the phoneme signal are to standard phoneme signal and should be a single 

number from 0 to 100. Finally, Step 1 and Step 2 are executed in parallel processing to increase  
ASR performance.  

 

 

4. RESULT AND DISCUSSION 

This section highlights the results of the tests of this study. The evaluation of the proposed ensemble 

technique (ET) has been organized in four experiments. The first experiment was conducted to test and 

record the results of the ET technique. Besides, three experiments were conducted to test and record the 

results of three existing noise reduction techniques to be compared with the first experiment. They are 

Spectral Subtraction [22], Wiener filter [23], and Gammatone filter [24]. All these techniques have been 

implemented in MATLAB software. In addition to that, the experiments used the Kaldi toolkit as an ASR 

engine, which is a free, open-source library for ASR research [25-26]. The four experiments used Word Error 

Rate (WER) and Character Error Rate (CER) as comparative measures. WER and CER have been calculated 
using (6) and (7) respectively [18, 26-27].  

 

𝑊𝐸𝑅 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
  (6) 

 

𝐶𝐸𝑅 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
  (7) 

 
Levenshtein algorithm has been used to count incorrect words and incorrect characters in  

(6) and (7) [27]. Besides, 5000 phrases contained 26531 words have been used as a testing dataset in the 
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experiments. These phrases were chosen randomly from Google Books Ngram Viewer, which is free to 

download and is commonly used in several domains [18-19]. The text of these phrases is useful as a 

reference in the experiments. The speech audio files of these phrases have been produced using Google 

Cloud Text-to-Speech to create the testing dataset. Noise signal has been generated using Gaussian 

distribution [28] and added to the speech audio files of the testing dataset. Table 1 presents the tests result of 

the four experiments using the WER.  

 

 
Table 1. Tests Result of the WER 

 Spectral Subtraction Wiener filter Gammatone filter The proposed technique 

Total words 26531 26531 26531 26531 

Wrong words 13615 12411 11747 8686 

WER 51.32% 46.78% 44.28% 32.74% 

 

 

In Table 1, the test results of the experiments present various values of WER for each tested 

technique and the WER of all tested techniques is still high for noisy speech signals. They also present that 

the Spectral Subtraction technique achieved the lowest value of accuracy with the WER of 51.32%. The 

results confirm that the Wiener filter technique achieved better accuracy than the previous with the WER of 
46.78%, followed by the Gammatone filter technique with WER of 44.28%. Moreover, the proposed 

technique was the one that achieved the most robust results with the WER of 32.74%. It obtained a 14.72% 

relative reduction compared to the average error rate for older noise reduction methods. In addition, it 

obtained an 11.54% relative reduction compared to the best error rate for these methods. This indicates that 

the proposed ensemble technique achieved the best accuracy against other current methods. Table 2 presents 

the tests result of the four experiments using the CER.  

 

 

Table 2. Tests Result of the CER 
 Spectral Subtraction Wiener filter Gammatone filter The proposed technique 

Total characters 108124 108124 108124 108124 

Wrong characters 49477 41854 41022 23072 

CER 45.76% 38.71% 37.94% 21.33% 

 

 

As can be seen in Table 2, the worst performance in terms of CER value was achieved by the 

Spectral Subtraction technique, which has a rate of 45.76%. Moreover, the values of CER for the current 

techniques of Wiener filter and Gammatone filter differ slightly with values of 38.71% and 37.94% 

respectively. In contrast, the proposed technique achieved the best CER reduction with a value of 21.33%. It 

obtained a 19.47% relative reduction compared to the average error rate for older noise reduction methods. In 

addition, it obtained a 16.61% relative reduction compared to the best error rate for these methods. Hence, 

when comparing the results of the proposed techniques to those of older studies, they indicate that the ET 
technique achieved the best reduction in the incorrect character count against the older studies.  

The experimental results prove how combining multiple noise reduction techniques can help in 

designing a better ASR system. Furthermore, they show that the WER of noisy speech signal will always be a 

problem since noise is, by classification, unpredictable. Moreover, the Spectral Subtraction technique has a 

low accuracy because it assumes that noise is a slowly varying process or stationary and that the spectrum of 

noise is not significantly different due to background sounds.  

 

 

4. CONCLUSION 

Due to the complexity of the human hearing system and the quality of speech signals, improving the 

accuracy of ASR is still a challenging task. Therefore, in a real environment, robust automatic speech 
recognition is a common interest in the speech recognition communities. The main reason is that the speech 

of the speaker is corrupted by different background noises. In this work, an ensemble technique has been 

proposed for speech recognition in noisy environments based on three different noise reduction filters. As 

mentioned previously, the main idea of this technique is that instead of relying on anyone imperfect noise 

reduction filter, the proposed technique incorporates information from multiple noise reduction filters of the 

same speech signal to improve ASR output.  

The experimental results proved that different noise reduction filters potentially offered 

complementary information about the phonemes to be classified which could be harnessed to increase the 
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accuracy of the ASR system. Furthermore, the results also show that the proposed technique outperforms 

older studies for the comparative measures of WER and CER. Consequently, it is clear that the experiments 

of this research confirm that the goal of this study has been accomplished. Moreover, they found clear 

support for the evidence that it is hard for the ASR error rate to be 0% due to the different types of noise. In 

future work, farther research is required to develop methods that can improve the current studies' limitations 

of speech to text-domain for mobile applications. In addition, since a person can estimate words and phrases 

even if he does not hear them completely, then it can design a post-processing technique based on the n-gram 

language model to provide a mechanism similar to that of the human hearing system.  
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