
TELKOMNIKA, Vol. 11, No. 2, February 2013, pp. 864~870 
ISSN: 2302-4046 
      864 

  

Received August 30, 2012; Revised December 30, 2012; Accepted January 14, 2013 

An Improved Public Key Encryption Algorithm Based 
on Chebyshev Polynomials  

 
 

Jinhui Sun*1, Geng Zhao1, Xufei Li1 
1School of Communication Engineering, Xidian University  Xi’an 710071, China,13439925967 

  *Corresponding author, e-mail: sjhyunle@163.com 
 
 

Abstract 
This paper proposes an improved public key encryption algorithm based on Chebyshev 

polynomials. On the base of the semi-group property of Chebyshev polynomials, we import the alternative 
multiply coefficient iK to forge the ciphertext tactfully which can make the cipher text-only aattack out of 

work. The chosen of iK is decided by  the value of ( ( )) modr sT T x N , and the number of iK can be chosen 

as required. Besides, The digital signature of the ciphertext not only can prevent the result from faking and 
tampering attack, but also can make the algorithm have the function of identity authentication. 
Experimental results and performance analyses show that the improved algorithm has much higher 
security and practical value. 
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1. Introduction 

Chaos possesses certain intrinsic properties such as sensitive dependence on initial 
condition, random-like behavior, and continuous broadband power spectrum. These 
characteristics match the confusion, diffusion, and key sensitivity requirements of cryptography. 
In recent years, there have been a tremendous amount of reports in how to use chaotic systems 
to design cryptographic algorithms. Although most of them aim at symmetric-key schemes, such 
as [1-4]. There are still some for asymmetric-key or public key cryptosystems, such as [5, 6]. 
The focus of this paper is on the later one, i.e., public-key cryptosystems based on chaos.   

In [7], Kocarev et al. suggested public key cryptography based on the commutative 
property of Chebyshev polynomials over real numbers. However, it was later cryptanalyzed by 
Bergamo et al [2], and other researches [8, 9]. The fundamental weakness of this algorithm is 
that Chebyshev polynomials of order n have an explicit algebraic expression

)arccoscos()x( xnTn    over real numbers. To resist this attack, Kocarev et al. modified the 

algorithm by employing the Chebyshev polynomials defined over the finite field NZ [10]. The 

explicit algebraic expression of Chebyshev polynomials over NZ doesn’t help to find n  giving an 

initial value 0x and a final iterated value nx . Furthermore, Kocarev et al. pointed out that the 

problem of computing n reduces to the discrete logarithm problem [10]. But it is not always true 
and it depends on the choice of N as the analysis [11]. There the authors analyzed the period 
distribution of sequences generated by Chebyshev polynomials over finite fields when the 
modulus N is a prime. An attack on the public key algorithm was also proposed, followed by an 
improvement of the algorithm to make it for real world applications. Besides, the security of this 
class cryptosystems is investigated from a practical viewpoint. 

In this paper, we proposed an improved public key encryption algorithm based on 
Chebyshev chaotic map, which overcomes the drawbacks of the previous schemes and 
provided a higher level of security. Analytical and experimental results show that it is robust to 
generic attacks. 

 This paper is organized as follows. In section II, we give a description of the 
Chebyshev chaotic map and some properties of it. In Section 3, the basic encryption algorithm 
over Chebyshev polynomials is presented, and an attack to it was described, and then an 
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improved encryption algorithm is proposed. Section 4 contains the solutions to some software 
implementation issues, an example and the experimental results. Section 5 presents some 
performance analyses. Finally, conclusion will be drawn in the last section. 

 
 

2. Preliminaries 
Definition 1. Let n Z   and x R , then a Chebyshev polynomial of order n ,

( ) :nT x R R is recursively defined using the following recurrent relation:  

 

1 2( ) 2 ( ) ( ), 2n n nT x xT x T x n                                                                                     (1) 

 
where 0 ( ) 1T x  and 1( )T x x . 
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When x is a real number, ( )nT x always has the following explicit algebraic expression: 
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Some important properties of Chebyshev polynomials are as follows. 
 

( ( )) ( ( ))r s s rT T x T T x                                                                                                       (3) 

 
1

2 2( )
n nx x x x

nT
                                                                                                               (4) 

 
Proposition 2 can be easily deduced from the explicit algebraic expression (2) and it is 

this commutative property that is employed by Kocarev et al. to construct a novel public key 
algorithm [7-10]. 

When x R , the explicit algebraic expression of ( )nT x to a security loophole in the 

public-key cryptosystem based on Chebyshev polynomials defined over the real number field 
[12]. Therefore, Kocarev et al. extended the definition of ( )nT x to the finite field nZ [10]. 

Definition 2. Let 0n  be an integer, a variable Nx Z and N  be a positive integer. 

Chebyshev polynomial of order n  is recursively defined by 
 

1 2( ) (2 ( ) ( )) modn n nT x xT x T x N                                                                                   (5) 

 
where 0 ( ) 1modT x N and 1( ) modT x x P .  

It is easy to verify that the above propositions of ( )nT x also holds over NZ . 

 
 
3. The Improved Public Key Encryption Algorithm 

The public key algorithm proposed by Kocarev et al. in [10] is as follows. Suppose Alice 
wants to communicate with Bob. They do the followings. 
1) Bob generates a large integer s , selects a random number Nx Z , and computes ( )sT x  mod

N , then sets the public key to ( , ( ))sx T x and the private key is s . 

2) In order to send the message to Bob, Alice obtains Bob’s authentic public key ( , ( ))sx T x , 

represents the message as a number NM Z , then, she generates a large random integer r and 
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computes 1 2( ) mod , ( ( )) modr r sC T x N C M T T x N   , then sends the ciphertext 1 2( , )C C C to 

Bob. 
3) In order to decrypt the message, Bob uses his private key s to compute

1( ) ( ( )) ( ) ( ( ))s s r sr r sT C T T x T x T T x   , thus he recovers the plaintext by computing

/ ( ( ))s rM X T T x . 

In [10], N is chosen as a prime and so the decryption is always correct. But when N is a 
composite, this algorithm encounters a problem: the inverse of ( ( ))s rT T x , says 1( ( )) mods rT T x N , 

does not always exist which is the same problem with Rabin public key cryptosystem. This 
problem is equivalent to that the solution for M is not unique if 1( ( )) mods rT T x N is not invertible, 

i.e. ( ( ))s rT T x and N have common divisors. There are two simple methods to solve it. 

1) Add extra information to indicate which plaintext is encrypted. 
2) When the generated random number r leads to common divisors between ( ( ))s rT T x  and N , 

reject it and choose another one until they are coprime. 
With these measures, a composite N is also allowed in the cryptosystem. In the 

following discussion, we only address the situation when N  is a prime. This is because 
composite N leads to a more complicated situation than prime N .  

The above public key encryption algorithm is simple, and it could resist Bergamo et al.’s 
attack. However, it is just a basic idea and cannot be used directly in practice. There are still 
some security problems, such as vulnerability to man-in-the-middle attack, nonsupport mutual 
authentication and so on.  

Here we introduce one kind of man-in-the-middle attack. 
Suppose Malice intercepted a piece of ciphertext ( ( ), ( ( )))r r sC T x M T T x  before Alice 

and Bob communicated. Now, he can modify the ciphertext to ( ( ), ( ( )))r r sC T x M kT T x  , where 

k  belongs to NZ and is known to Malice. Then, Malice sends the modified ciphertext to Bob for 

decryption and gets back the plaintext 'M KM . Then, Malice can recover M by ' /M M k , 
which was the message Alice and Bob once communicated. This attack is a chosen-ciphertext 
attack with which many public key cryptosystems based on a rigid mathematical structure may 
suffer. To avoid this attack, a common approach is to sign the ciphertext to make sure that it has 
not been altered. So, a more detailed public key encryption algorithm is needed for secure 
communication. 

The improved public key encryption algorithm is similar to the above one, the critical 
factor is the adoption of the alternative multiply coefficient ( )i i NK K Z . iK is secret , which is 

only shared with participants. Accordingly, this algorithm fortifies the complexity without 
increasing the calculation difficulty. The digital signature prevents the ciphertext from man-in-
the-middle attack and tamper attack. So, the improved algorithm inherits the advantage of the 
above one, but has better security and higher reliability. 

The choice of iK is decided by the value of ( ( )) modr sT T x N . 

 

1 4

2
2

( 1)

( 1)

, 0 ( ( )) mod

, ( ( )) mod

, ( ( )) mod

, ( ( )) mod

N
r s

N N
r sn n

i i N iN
i r sn n

n N
n r sn

K T T x N

K T T x N

K
K T T x N

K T T x N N





 


 
 

 


  





                                                    (6) 

 
The algorithm is described as follows: (assume Alice wants to communicate with Bob) 

(1) Key pair generation 
In order to generate the keys, Bob does the following: Randomly select an integer 

number s and Nx Z , and computes ( ) modsT x N , and His private key is s , and his public key is

( , ( ) mod )sx T x N . 
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(2) Message encryption 
Assume that Alice wants to send the message ( 0)NM Z M  to Bob. She does the 

followings: Randomly select an integer number r . Get Bob’s public key ( , ( ) mod )sx T x N , 

computes ( ) modrT x N , ( ) mod ( ( ) mod )rs r sT x N T T x N , and then choses iK  according to equation 

6, and computes ( ) mod , ( ( ))i rs A K AX K MT x N Y E Sig X  . ( )KE � is one of symmetric cryptography. 

Sends the ciphertext ( ( ) mod , , )r AT x N X Y to Bob. 

(3) Message decryption 
After receiving the encrypted message, in order to decrypt it, Bob does the followings: 

(1) Decrypt AY to check i ( )AS g X . If it is right, continue, or stop. 

(2) Uses his private key s to compute ( ( )) mod ( ) mod ( ( )) mods r sr r sT T x N T x N T T x N  , and choses

iK according to equation 6. 

(3) Recovers M by computing / ( ( ) mod )i srM X K T x N . 

 
 
4. Software Implementation 
4.1. Feasibility Analysis 

There are two main software implementation issues of this algorithm. One is the 
correctness of the algorithm when it is implemented in finite fields. The semi-group property of 
Chebyshev polynomials holds over NZ . 1( ( )) mods rT T x N exists as long as N is a prime. So we 

can recover M  by computing / ( ( ) mod )i srM X K T x N .Another issue is how to evaluate 

Chebyshev polynomials so that the computation time of ( )nT x could be reduced. There are 

several kinds of measures. The first is assume the large number s  ( r  is the same) is written as 
 

1 2
1 2

ikk k
is s s s                                                                                                                 (7) 

 
Then 
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So, for computing ( )sT x one needs only 1 2 ik k k  iterations of the Chebyshev map 

instead of s iterations [7]. Because choosing s and then factorizing s to get ( 1, 2,3...)ik i  may cost 

a lot of time, but a reverse order can be adopted easily, i.e., ik is chosen randomly and then s is 

constructed by ik .The second is the fast algorithm of Chebyshev polynomials[13]. Rewrite the 

Chebyshev polynomials as 
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From equation 9, we can find out that the key point of computing ( )nT x is to compute the 

value of matrix
0 1

1 2

n

x

 
  

. Figure 1 illustrates the detailed process in a simplified sequence flow 

diagram. 
After getting A , we can get the result ( ) modnT x N easily using modulo operator. In [13], 

author has verified the high efficiency of the fast algorithm of Chebyshev polynomials. 
 

4.2. An Example 
 Here we present a simple example to illustrate the basic algorithm and main steps of 

the algorithm. Assume 61N  , the choice of iK is decided by equation 10. 
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(1) Bob randomly selects an integer number 3s  , and 5x  , computes 3( ) mod (5) mod 61 58sT x N T  . 

Bob’s private key is 3s  , and his public key is ( , ( ) mod ) (3,58)sx T x N  . 

(2) Alice randomly selects an integer number 7r  , she wants to send the plaintext 16M  , so she 
computes 7( ) mod (5) mod 61 10rT x N T  , 7 3( ) mod ( (5) mod 61) 5rsT x N T T  , and then choses 

1 3iK K  by equation 10. 1 7 3( ) mod (5) mod 61 57i rsX K MT x N K MT    . So she sends the 

ciphertext ( ( ) mod , ) (10,57)rT x N X  to Bob. 

(3) Bob gets the ciphertext, uses his private key 3s  to compute

3 7( ( )) mod ( (5)) mod 61 5s rT T x N T T  , and choses 1 3iK K  according to equation 10, then he can 

recovers M by computing / ( ( ) mod ) 57 / 3 5mod 61 16i srM X K T x N    . 

 
 

 
 

Figure 1. The Fast Algorithm of Chebyshev Polynomials 
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4.3. Experimental Analysis 
The software environment is that basic frequency is 2.60GHz and RAM is 1.99GB. We 

achieve the algorithm by programming and record the time running on different bits. The result 
is shown in Figure 2. 

The experimental results show that this algorithm has the high efficiency when the bit is 
small. But when the bit is relatively large, the running time is not satisfactory. This is the point 
where we intend to make some improvement. 
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Figure 2. The Running Time of Algorithm 
 
 

5. Performance Analyses 
We present several security analyses of the improved public key encryption algorithm 

here. Theoretical analyses prove the improved algorithm could effectively resist common 
attacks. Besides, it is efficient and practical. 

 
5.1. Security Resistant to Man-in-the-middle Attack which is Described Above 

Malice alters the ciphertext by sneaking the alternative multiply coefficient k , and then 
gets the plaintext by calculating ' /M M k . However, in the encryption process, we apply the 
alternative multiply coefficient iK tactfully. iK is not only decided by the value of ( ( )) modr sT T x N

but also is only shared with participants, so we do not need worry about the safety of the chosen 
of iK . 

 
5.2. Security Resistant to Tamper Attack  

Alice signs the ciphertext ( )ASig X in the encryption process, Bob can check whether the 

result is tampered, forged or not accordingly. If right, continue, or stop. 
 

5.3. Identity Authentication 
Because Alice signs the ciphertext in the encryption process, ( ( ))A K AY E Sig X , so Bob 

can verify the identity of Alice by Alice’s public key in decryption process easily.  
 

5.4. Practicability Analysis 
Modulus N is a large prime, and i NK Z , so iK has a lot of choice space and can be 

altered regularly. Here, i is a optional parameters, we can chose iK slickly as needed. Besides, if 

the number of users increased, we can increase the number of i accordingly. ln the practical 
cryptography application, altering key iK regularly to enhance the security of cryptography has 

the features of high convenience, efficiency, maneuverability. 
 
5.5. Comparison Between the Improved Algorithm and the Algorithm Proposed in [10] 

The two algorithm both have achieved the function of encryption. But the improved  
algorithm has higher security and reliability. Its critical point is alternative multiply coefficient iK

,which can prevent the result suffering cipher text-only attack . The use of digital signature can  
help validate identities and avoid tampering attack. The performance comparison analysis  are 
shown in the following Table1. 
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Table 1. The Performance Comparisons  
Attacks /functions The algorithm proposed in [10] the improved algorithm 

Bergamo et al attack[2] Not safe safe 

man-in-the-middle attack Not safe safe 
tampering attack Not safe safe 
Authentication Not given given 
practicability ok Very good  

 
 
From  the process of public key encryption algorithm, we can see that the  computation 

complexity is the same with the former one. The application of digital signature is pretty  
practised. So, in practical terms, the  improved algorithm is superior  to the former one. 
 
 
6. Conclusions 

In this paper, we introduce one kind of man-in-the-middle attack and propose an 
improved public key encryption algorithm based on Chebyshev polynomials. This algorithm 
imports alternative multiply coefficient iK  to forge the ciphertext and adopts digital signature 

tactfully to ensure Alice’s identity. All of these measures make the system not only can resist 
chosen-ciphertext attack and tamper attack, but also has the function of identity authentication. 
Experimental results and performance analyses show that it is more secure and more practical. 
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