
TELKOMNIKA, Vol. 11, No. 2, February 2013, pp. 855~863
ISSN: 2302-4046
  855

Received August 18, 2012; Revised December 30, 2012; Accepted January 14, 2013

Authentication of the Command TPM_CertifyKey in the
Trusted Platform Module

Donglai FU*1,2, Xinguang PENG2, Yuli YANG2
1School of Electronics and Computer Science and Technology, North University of China, Taiyuan, Shanxi,

030051, China
2School of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi,

030024, China
*Corresponding author, e-mail: hhluci@163.com

Abstract
Trusted Platform Module (TPM) is a key component designed to enable computers achieve

greater security. Several vulnerabilities discovered in the TPM highlight the necessity of formal analysis.
The procedure invoking an API may be regarded as several interactive processes between the TPM and a
user. As a result, the current study formalized the API specifications proposed by Trusted Computing
Group (TCG) using applied pi calculus. Meanwhile, two authentication properties between them were also
described in a formalized way. With the help of the tool ProVerif, the flaw of the command TPM_CertifyKey
was discovered. It was also confirmed on the TPM emulator. Subsequently, the modified API was
presented and its authentication properties could be satisfied after verifying again. Results show the model
is valid.

Keywords: trusted computing, trusted platform module, security analysis, authentication

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Trusted Computing is a solution to resolve some inherent defects in an open-
distributed-computing environment. It only embeds a hardware chip called Trusted Platform
Module (TPM) on the motherboard to enable computers achieve greater security without
changing the current computer architecture. In order to promote the technology, Trusted
Computing Group (TCG) proposed the TPM specifications which have been ISO/IEC standards
[1-4]. More and more applications based on it have been developed [5-6]. However, the
application programming interfaces (APIs) of the TPM have been still described in natural
language up to now. Therefore, when implementing them different people have different
interpretation, which results in some security problems. Especially, several attacks discovered in
a few last years against it highlight the necessity of formal analysis of the API specification. As a
result, the current study focuses on the problem.

In our study, a series of behaviors that application software invokes a certain TPM API
are regarded as an interactive procedure. Therefore, the problem of the TPM security can be
discussed as another problem about security protocols between a user and the TPM. At first, we
modeled the TPM APIs using the applied pi calculus and formalized a bidirectional
authentication between the user and the TPM. After then, the Object Independent Authorization
Protocol (OIAP) and the command TPM_CertifyKey were symbolized in order to describe them
accurately. And their formal models described using the applied pi calculus were also given.
Moreover, to verify the authentication, the tool ProVerif was adopted and a flaw of the command
TPM_CertifyKey was found. Because of the defects of the tool ProVerif, the attack discovered
by it was simulated on the TPM emulator 0.7.1. At last, we discussed some fixes to the
command TPM_CertifyKey, and proved the authentication properties for the modified API.

The main contributions include:
(1) A complete formal model with supporting verification was given about the TPM APIs and

related authentication properties, which established the foundation for analyzing abundant
TPM APIs;

(2) To obtain a finer and real formal model, we proposed a modeling idea using an integrated
API scenario instead of an individual API. The method can avoid the defects of modeling a

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 855 – 863

856

single API;
(3) For the imperfectness of ProVerif, the verification method under the real environment was

used, which guaranteed the validity of such attacks discovered by ProVerif;
(4) We formalized the scenario that the command TPM_CertifyKey was executed under the

OIAP context and identified its authentication properties. Through the tool ProVerif, we found
a flaw. And, in order to prove its authenticity we also stimulated such attacks which took
different key combinations as input on the TPM emulator 0.7.1.

2. Releated Works

At present, the study on the TPM safety can be divided into two aspects: trusted
application and the TPM APIs security itself. In our study, the latter was concentrated. As for the
former, most previous studies assume that the TPM APIs are correct and consistent. For
instance, Datta Anupam analyzed formally the security of remote attestation protocols, which
thought on both the dynamic trust root and the static, under presuming the TPM APIs were
secure [7]. Wang Dan, Wei Jinfeng and Zhou Xiaodong analyzed security properties of current
remote attestation protocols through communicating sequential processes (CSP) which is also a
formal analysis method [8]. Yang Li, Ma Jianfeng designed a direct anonymous attestation
scheme in cross trusted domain for wireless mobile networks based on Canetti-Krawczyk model
(CK) under assuming the TPM APIs were safe [9].

On the latter, the current achievements have also two branches: Aiming at single
vulnerability and based on a formal model. For example, Bruschi found a leak of OIAP in the
TPM which was intended to a replay attack in 2005 [10]. Moreover, Chen also found two attacks
against weak authdata secrets [11] as well as shared authorization data [12] respectively.
However, lower level analyses of the TPM APIs based on a formal model are rarer. They
include: Lin described an analysis of various fragments of the TPM APIs using Otter and Alloy
[13]. However, his model omitted some details such as sessions, HMAC and authdata, but
included the state. Although he discovered a possible attack on the delegation model of the
TPM, experiments with a real TPM had shown that the attack is not possible [14]. In addition,
Delaune modeled the TPM APIs based on process algebra [15]. In China, Xu Shiwei and Zhang
Huanguo described a formal security analysis on trusted platform module based on applied pi
calculus [16].

The current study is inspired by the above results. The model of the TPM APIs was
described formally through applied pi calculus as well as its authentication properties between
the user and the TPM. We modeled the scenario that the command TPM_CertifyKey is used in
the OIAP context. And the authentication of the model was identified and verified by the tool
ProVerif. Fortunately, a flaw of the API was founded. To guarantee its authenticity, the attack
program was executed on the TPM emulator 0.7.1. It verified all kinds of circumstance under
different key combinations. At last, we discussed the fixed method and verified its
authentication.

3. TPM Analysis
3.1. Functions and Key Management

TPM provides three kinds of functionality: secure storage, platform identity
authentication and platform measurement and reporting. All keys in the TPM are stored in the
shielded memory. They only are accessed through its APIs. Keys are organized in a tree
hierarchy, with the Storage Root Key (SRK) at its root. And, each key is associated with an
authorization data named as authdata. To use the key, a user must offer the relevant
authorization data. In addition, the trusted computing specification only allows users to access
them by certain authorization session protocol to obtain greater security.

3.2. Analyzing and Symbolizing OIAP

 An authorization session created by the OIAP can manipulate any objects, but some
commands can not be executed in the session. The complete TPM OIAP session can be seen
in the Figure 1. The session can be divided into two phrases: session creation and command
execution. After the session is created, the TPM returns one even nonce and one session

TELKOMNIKA ISSN: 2302-4046 

Authentication of the Command TPM_CertifyKey in the Trusted... (Donglai FU)

857

handle. During the subsequent procedures, the TPM communicates with the user with a rolling
nonce protocol to obtain fresh messages.

Adding the following four points for Figure 1：
(1) The parameter named inParamDigest is the result of the following calculation:

inParamDigest = SHA1(ordinal||inArgOne||inArgTwo);
(2) The parameter named inAuthSetupParams refers to the result of the following calculation:

inAuthSetupParams = SHA (authLastNonceEven ||nonceOdd ||continueAuthSession);
(3) The parameter named outParamDigest refers to the result of the following

calculation:outParamDigest = SHA1(returnCode||ordinal||outArgOne);
(4) The parameter named outParamDigest refers to the result of the following calculation:

outAuthSetupParams = SHA1(nonceEven||nonceOdd ||continueAuthSession).
To obtain a relative accuracy description for the OIAP session, it was symbolized. Let U

be a generic subject that wishes to create the OIAP session with the TPM T. Moreover, let
(1) returnCode be a return code of the operation;
(2) SUT be a secret shared between U and T;
(3) nonceEven be an even nonce generated by T;
(4) nonceOdd be an odd nonce generated by U;
(5) RQU be a request command type;
(6) RSD be a response command type;
(7) ordinal be a command ordinal;
(8) || be the concatenation of the data;
(9) H be a hash calculation;
(10) paramSize：the size of all parameters;
(11) inArgOne and inArgTwo be two different input parameters;
(12) outArgOne be an output parameter.

Figure 2 shows the procedure of the OIAP session in some abstract symbols. Initially, U
requests to open an authorization session by sending the command with parameters including
RQU, paramSize and ordinal to T. After then, T sends back to U the session information to
handle the authorization session itself. If these steps are correctly performed, U can send to T a
command to execute, which embeds the proof that she knows SUT. On receiving it, T will verify
the message about authenticity and integrity, and if they are satisfied, T will execute the
command on behalf of U, sending back to U the result. Otherwise, the connection will be closed
by T.

3.3. Analyzing and Symbolizing the Command TPM_CertifyKey

The operation TPM_CertifyKey allows one key to certify the public portion of another
key. As such, it allows the TPM to make the statement “this key is held in a shielded location,
and it will never be revealed.” From the TPM specification, an identity key may be used to certify
non-migratable keys, but is not permit to certify migratory keys or certified migration keys.
However, Signing and legacy keys may be used to certify both migratable and non-migratable
keys.

The processing of the command TPM_CertifyKey is described in the Figure 3 in detail.
On receiving the command TPM_CertifyKey, the TPM does as follows: Validate the key to be
used to certify another key has a signature schemeValidate two authorization data associated
to two keys are trueCheck the protocol version (1.2 or 1.1)Create C1 that a structure
TPM_CERTI_INFO and Sign it and return. It should be noted that C1 includes the signature
information of the key to be certified.

To describe the command TPM_CertifyKey in symbols, let (See the section 3.2, if there
is a symbol not to be introduced):
(1) certHandle be a handle which points to a key to be used to certify another key.
(2) keyHandle be a handle which points to a key to be certified.
(3) antiReplay be a random number to be used to prevent a replay attack.
(4) certAuthHandle be a session handle used for certHandle.
(5) authLastNonceEven be an even nonce lately generated by the TPM in the session used for

certAuthHandle.
(6) nonceOdd be an odd nonce generated by the user and associated with certAuthHandle.
(7) continueAuthSession be the flag that the session used for certAuthHandle is continue or

not.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 855 – 863

858

(8) certAuth be the authorization session digest for inputs and certHandle，it equals:
HMAC(certKey.auth,SHA1(ordinal||antiReplay||authLastNonceEven||nonceOdd
||continueAuthSession).

(9) keyAuthHandle be a session handle used for keyHandle.
(10) keylastNonceEven be an even nonce lately generated by the TPM in the session used for

keyAuthHandle.
(11) keynonceOdd be an odd nonce generated by the user associated with keyAuthHandle.
(12) continueKeySession be the flag the session used for keyAuthHandleis continue or not.
(13) keyAuth be the authorization session digest for inputs and keyHandle，it equals:

HMAC(key.usageAuth,SHA1(ordinal||antiReplay||keylastNonceEven||keynonceOdd
||continueKeySession).

Figure 1. OIAP Processing

Figure 2. OIAP Processing in Symbols

Figure 3. TPM_CertifyKey Processing

Figure 4. TPM_CertifyKey Processing in

Symbols

(14) certifyInfo be a structure TPM_CERTIFY_INFO or TPM_CERTIFY_INFO2 that provides

information relative to keyHandle.
(15) outDataSize be the used size of the output area for outData；
(16) outData be the signature of certifyInfo.
(17) resAuth be the authorization session digest for the returned parameters and certHandle, it

equals: HMAC (certKey. auth, SHA1 (returnCode||ordinal||certifyInfo||outDataSize
||outData) ||nonceEven||nonceOdd|| continueAuthSession).

(18) keyAuth be the authorization session digest for the target key, it equals: HMAC
(key.usageAuth, SHA1 (returnCode||ordinal|| certifyInfo||outDataSize ||outData)
||keyNonceEven ||keynonceOdd||continueKeySession).

TELKOMNIKA ISSN: 2302-4046 

Authentication of the Command TPM_CertifyKey in the Trusted... (Donglai FU)

859

Figure 4 shows the procedure of the command TPM_CertifyKey in some symbols.
Initially, U requests to certify a key by sending the command with parameters including RQU,
paramSize, ordinal, certHandle and keyHandle and so on to T. Afterwards, T will verify a series
of conditions, if they are satisfied, T will execute the command on behalf of U, sending back to U
the result. Otherwise, the connection will be closed by T.

4. Modeling TPM
4.1. Definition of the TPM Model

Practically, when developing a trusted application, a user always invokes the TPM APIs
to achieve certain security aims. The invoking procedure can be abstracted as an interactive
problem between two processes. With reference to the literature [14], the set of the commands
included by the TPM specification can be defined as: Tpm = {Tpmi| i∈N+}, each Tpmi
corresponds to a specific command, namely an API function. Of course, the set of the user
processes can be defined as: User = {Useri| i∈N+}, each Useri is a set of actions executed by a
user when invoking an API. Therefore, the TPM model can be defined as:

Definition 1 TPM model TpmModel = !Useri | !Tpmj | Userk | Tpml, Useri,Userk∈User,
Tpmj,Tpml∈Tpm, and i≠k, j≠l，the symbol ! notes that the process can be created repeatedly.

4.2. Formal Definition of Authentication

Actually, the authentication is bidirectional between the user and the TPM during
invoking a certain API.

The authentication that the TPM certifies the user can be described as: If the TPM has
executed a certain command, then the user in possession of the relevant authdata has
previously requested the command. It can be defined as formally:

Definition 2 The authentication of the user can be expressed by the correspondence
properties:TpmConsider(M1,M2,…Mi,…Mn)==>UserRequest(M1,M2,… Mi,…Mn).

The event TpmConsider(M1,M2,…Mi,…Mn) expresses the TPM has executed a certain
API. The event UserRequest(M1,M2,…Mi,…Mn) expresses the user has previously requested a
certain API. The symbol Mi represents the ith parameter of the event.

The above property can hold if the event TpmConsider(M1,M2,…Mi,…Mn) occurs, then
the corresponding event UserRequest(M1,M2,… Mi,… Mn) has previously appeared.

Similarly, the authentication that the user certifies the TPM can be described as: If the
user considers that the TPM has executed a certain command, then the TPM really has
executed the command. It can be defined as formally:

Definition 3 the authentication of the TPM can be expressed by the correspondence
properties: UserConsider(M1,M2,…Mi,…Mn)==>TpmConsider(M1,M2,…Mi,…Mn).

The event UserConsider (M1,M2,… Mi,…Mn) expresses the user considers the TPM
has executed a certain API. The event TpmConsider(M1,M2,…Mi,… Mn) expresses the TPM
has really executed the API. The symbol Mi represents the ith parameter of the event.

The above property can hold if the event UserConsider(M1,M2,…Mi,…Mn) occurs, then
the corresponding event TpmConsider(M1,M2,…Mi,… Mn) has previously appeared.

In the TPM specification, two authentication properties are achieved by the
authorization HMACs which accompany the corresponding command. The HMAC of the former
is provided by the user, but the HMAC of the latter is given by the TPM.

4.3. Modeling the Scenario of the Command TPM_CertifyKey

Invoking the command TPM_CertifyKey needs open two authorization sessions, and
mutual authentication only depends on HMACs from two parties. Thus, some details to be
irrelevant to the authentication are omitted.

Figure 5 shows the whole scenario that the command is used in the OIAP context.
Initially, a user sends the OIAP command ordinals S1 and S2 to the TPM in order to obtain two
authorization session handles H1 and H2 and two corresponding even-random numbers Ne1
and Ne2. Then, a user sends the command TPM_CertifyKey with parameters including a key to
used to certify another key, a key to be certified, a random number aRn to prevent replay
attacks, two session handles H1 and H2, two authorization HMACs HMAC(D1，SHA1(aRn ||
Ne1 || No1)) and HMAC(D2，SHA1(aRn || Ne1 || No1)), D1 and D2 are the authorization data of

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 855 – 863

860

two keys K1 and K2. Finally, the user obtains a signature of K2 created by K1 and two
authorization HMACs.

Combining Figure 5 with Definition 1, the scenario of the command TPM_CertifyKey
can be formally defined as:

Definition 4 CertifyKey = Tpm_OIAP1 | Tpm_OIAP2 | User_OIAP1 | User_OIAP2 |
!Tpm_CertifyKey | !User_CertifyKey.

Figure 5. Scenario of TPM_CertifyKey in OIAP

Although there is not a requirement that the session can not be repeatedly used in the
TPM specification, only one command is executed in each session. The reason has two points:
the non-monotomic state of the TPM and the fault of not modeling a state transition system
using the tool ProVerif. The above scenario includes:
(1) The processes Tpm_OIAP1 and User_OIAP1 which are used to create one session only are

executed one time;
(2) The processes Tpm_OIAP2 and User_OIAP2 which are used to create another session are

also executed one time;
(3) The processes Tpm_CertifyKey and User_CertifyKey which are used to stimulate the

command execution can be executed repeatedly.
With the help of Figure 5, definition 2 and 3, two authentication properties included the

aforementioned scenario can be defined as definition 5 and definition 6 respectively.
Definition 5 The authentication of the user can be expressed by the correspondence

properties: TpmConsider(D1,PK1,D2,PK2,certiInfo)==> UserRequest(D1,PK1, D2,PK2).
In the above definition, D1 and D2 are two authorization data. PK1 and PK2 are two

public keys. certiInfo is a signature of K2 singed by K1.The property can hold If the event
TpmConsider(D1,PK1,D2,PK2,certiInfo) occurs, then the event UserRequest(D1,PK1, D2,PK2)
has previously appeared.

Definition 6 The authentication of the TPM can be expressed by the correspondence
properties:UserConsider(D1,PK1,D2,PK2,certiInfo) ==>TpmConsider(D1,PK1,D2,PK2,certiInfo).

In definition 6, D1 and D2 are two authorization data. PK1 and PK2 are two public keys.
certiInfo is a signature of K2 singed by K1. The property can hold if the event
UserConsider(D1,PK1,D2,PK2, certiInfo) occurs, then the corresponding event
TpmConsider(D1,PK1,D2,PK2,certiInfo) has previously appeared.

5. Experiment and Evaluation
5.1. Verification Using ProVerif

The primary goal of ProVerif is the verification of cryptographic protocols. Cryptographic
protocols are concurrent programs which communicate using public communication channels
such as the Internet to achieve some security-related objectives. These channels are assumed
to be controlled powerfully and completely, the attacker may: read, modify, delete, and inject
messages. We only model honest parties because the environment can capture the behavior of
dishonest participants. Therefore, in the model of the above scenario, there are six processes:
two processes named Tpm_OIAP1 and User_OIAP1 are used to create one session; two
processes named Tpm_OIAP2 and User_OIAP2 are used to create another session; two
processes named Tpm_CertifyKey and User_CertifyKey are used to stimulate a series of
behaviors of the command TPM_CertifyKey; More specifically, the process Tpm_CertifyKey
models the behavior of the TPM, but the process User_CertifyKey models the behavior of the
user. Figure 6 and Figure 7 respectively show their behaviors in detail.

TELKOMNIKA ISSN: 2302-4046 

Authentication of the Command TPM_CertifyKey in the Trusted... (Donglai FU)

861

According to Figure 6, the process User_CertifyKey obtains two keys, namely to certify
and to be certified, from a channel. Then, she constructs two HMACs based on the
authorization data of two keys respectively. The event UserRequestCertifiedKey is triggered in
order to declare the user has requested the command TPM_CertifyKey with parameters by
prearranged data. At last, after the user receives the response of the command, she checks two
HMACs. If match, the event UserConsiderCertifiedKey will be triggered in order to declare the
user has considered the TPM has executed the command.

Figure 7 describes the behavior that the TPM executes the command TPM_CertifyKey.
Initially, the TPM receives two key-handles. Subsequently, she checks two HMACs. At last, she
signs the key h2 with another key h1, and triggers the event TpmConsiderCertifiedKey to
declare she has executed the command TPM_CertifyKey. When the above model was input into
the tool ProVerif, the results showed two properties could not hold (see Figure 8). And, it
discovered the attack track (see Figure 9).

Figure 6. User_CertifyKey Process

Figure 8. Outputs of ProVerif

U T*: n,ne1,no1,h1, hmac(getSecret(h1), (n,ne1,
no1)),ne2,no2,h2,hmac(getSecret(h2),(n,ne2,no2))
T* T: n,ne2,no2,h2,hmac(getSecret(h2),(n,ne2,
no2)),ne1,no1,h1, hmac(getSecret(h1), (n,ne1,
no1))
T T*:certif,ne1',no2,hmac(getSecret(h2),(n,ne1',no
2,certif)),ne2',no1,hmac(getSecret(h1),(n,ne2',no1,ce
rtif)
T* U: certif,ne2',no1,hmac(getSecret(h1),(n,ne2',
no1,certif)),ne1',no2,hmac(getSecret(h2), (n,ne1',
no2,certif))

Figure 9. Attack Track

Figure 7. Tpm_CertifyKey Process

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 855 – 863

862

In Figure 9, let T* and U* represent the TPM and the user respectively they are all
disguised by the attacker. Before the command is received by the TPM, the attacker swaps two
keys and their HMACs. Then, when returning the response, they are inversed again. Although
the user does not find any errors, she obtains an error signature.

5.2. Verification on the TPM Emulator

Because of the imperfectness of the tool ProVerif, it needs further validation when a
security property is not hold. Therefore, we build an environment using TPM Emulator 0.7.1,
Ubuntu 10.0.4（2.6.27.38）and jtss 0.4.1 in order to verify our attack. We wrote a program
stimulating the attacker with the help of the development tool Eclipse 3.2. According to the TPM
specification, the key to certify other key is only one of them including an identity key, a signing
key and a legacy key. And the key to be certified is only one of them including a signing key, a
storage key, an identity key, a bind key and a legacy key. We performed the experiment which
took different key combinations as inputs. Table 1 shows the results.

Table 1. Verification on the attack
Signing key Key to certified Attack

identity signing success
identity storage failure
identity bind failure
identity identity success
signing identity success
signing storage failure
signing bind failure
signing signing success

Only when the key to be certified is also a signing key or an identity key, the attack is

true. Otherwise, the attack will fail because of checking the type of a key. However, these
factors do not be considered in our applied pi calculus model. Therefore, we conclude the result
of ProVerif is true.

5.3 Modified API

Practically, the TCG specification does not disguise two different HMACs, which results
in the above attack. Therefore, if we add the key handle corresponding to the HMAC to it when
calculating, and then the attack will disappear. The tool ProVerif gives a proof for the modified
API.

6. Conclusion
In the study, we model the TPM using applied pi calculus, and formalize the bidirection

authentication between the TPM and a user. Subsequently, we analyze the command
TPM_CertifyKey in a complete context. Through the tool ProVerif, we find two authentication
properties of it can not hold. Because of the imperfectness of the tool ProVerif, we write the
attack program on the TPM emulator 0.7.1. At last, we verify the attack again after modifying the
formal model of the command TPM_CertifyKey.The results show our model is valid.

References
[1] International Organization Standardization (ISO). ISO/IEC 11889-1:2009. Information technology—

Trusted Platform Module—Part 1: Overview. Geneva: International Organization Standardization
(ISO); 2009.

[2] International Organization Standardization (ISO). ISO/IEC 11889-2:2009. Information technology—
Trusted Platform Module—Part 2: Design principles. Geneva: International Organization
Standardization (ISO); 2009.

[3] International Organization Standardization (ISO). ISO/IEC 11889-3:2009. Information technology—
Trusted Platform Module—Part 3: Structures. Geneva: International Organization Standardization
(ISO); 2009.

TELKOMNIKA ISSN: 2302-4046 

Authentication of the Command TPM_CertifyKey in the Trusted... (Donglai FU)

863

[4] International Organization Standardization (ISO). ISO/IEC 11889-4:2009. Information technology—
Trusted Platform Module—Part 4: Commands.Geneva: International Organization Standardization
(ISO); 2009.

[5] Liye TIAN, Changxiang SHEN. Productive Information System Oriented Trust Chain
Scheme.TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(5): 1093-1100.

[6] Teddy M, Andri Z. Securing E-mail Communication Using Hybrid Cryptosystem on Android-based
Mobile Devices. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(4): 788-797.

[7] Datta Anupam, Franklin Jason, Garg Deepak. Logic of secure systems and its application to trusted
computing. Proceedings of the 30th IEEE Symposium on Security and Privacy. Berkeley. 2009; 221-
236.

[8] WANG Dan, WEI Jinfeng, ZHOU Xiaodong. Design and validation for a remote attestation security
protocol. Journal on Communication. 2009; 30(11A):2 9-35.

[9] YANG Li, MA Jianfeng, JIANG Qi. Direct Anonymous Attestation Scheme in Cross Trusted Domain for
Wireless Mobile Networks. Journal of Software. 2012; 23(5): 1260-1271.

[10] Bruschi D, Cavallaro L, Lanzi A, et al. Replay attack in TCG specification and solution. Proceedings of
the 21st Annual Computer Security Applications Conference. Los Alamitos. 2005: 127-137.

[11] Chen L, Ryan MD. Offline dictionary attack on TCG TPM weak authorization data and solution. Future
of Trust in Computing. Wiesbaden. 2009: 193-196.

[12] Chen L, Ryan MD. Attack, solution and verification for shared authorization data in TCG. Proc. of the
6th Int Workshop on Formal Aspects in Security and Trust. Berlin. 2010: 201-216.

[13] AH Lin. Automated Analysis of Security APIs. Master’s Thesis. Boston: Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology. 2005.

[14] Ables K. An attack on key delegation in the trusted platform module. Master’s Thesis. Birmingham:
School of Computer Science, University of Birmingham; 2009.

[15] Delaune S, Kremer S, Ryan MD, et al. A formal analysis of authentication in the TPM. Proc. of the 7th
Int Workshop on Formal Aspects in Security and Trust. Berlin. 2011:111-125.

[16] Xu Shiwei, Zhang Huanguo. Formal Security analysis on trusted platform module based on applied pi
calculus.Journal of Computer Research and Development, 2011; 48(8): 1421-1429.

