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Abstract 

 Inspired by the structure of the network coding over the butterfly network, a framework of 
quantum network coding scheme is investigated, which transmits two unknown quantum states crossly 
over the butterfly quantum system with the multi-photon non-maximally entangled GHZ states. In this 
scheme, it contains certain number of entanglement-qubit source nodes that teleport unknown quantum 
states to other nodes on the small-scale network where each intermediate node can pass on its received 
quantum states to others via superdense coding. In order to transmit the unknown states in a deterministic 
way, the controlled quantum teleportation is adopted on the intermediate node. It makes legal nodes more 
convenient than any other previous teleportation schemes to transmit unknown quantum states to 
unknown participants in applications. It shows that the intrinsic efficiency of transmissions approaches 
100% in principle. This scheme is secure based on the securely-shared quantum channels between all 
nodes and the quantum mechanical impossibility of local unitary transformations between non-maximally 
entangled GHZ states. Moreover, the generalized scheme is proposed for transmitting two multipartite 
entangled states. 
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1. Introduction 

Quantum entanglement, which has become the essential resource for quantum 
information and quantum computing, is the most distinctive characteristic of quantum 
mechanics. Entanglement-based communication has attracted much attention since the initial 
work of Bennett, Brassard and Ekert. For example, in 1993 Bennet et al. [1] presented the 
original quantum teleportation which provides a theoretical basis for the construction of quantum 
channels. The reason may be that the modern technology allows it to be demonstrated in 
laboratory, and thus practical applications will be achieved in the future [2-4]. 

The conventional quantum communications are sometimes limited to the quantum 
system in a point to point fashion with low transmission rates. In order to achieve the multi-point 
communications in the practical applications, the framework of the quantum network has been 
introduced [5-7], however the declining transmission rate caused by the bottleneck channels 
becomes more and more apparent [8-9]. 

In order to solve the afore-mentioned problem, Hayashi et al. [10] proposed the 
quantum network coding (QNC) scheme while concentrating on the transmission of qubits over 
the butterfly quantum network similar to the classical network [11-12]. However, they found that 
the bottleneck can not be resolved in the quantum setting and the perfect quantum state 
transmission is impossible. That means one can not perform the perfect QNC in the quantum 
system. Fortunately, since entanglement provides several elegant approaches for enhancing 
efficiency of quantum communications such as superdense coding [13], entanglement swapping 
and teleportation [1], it is necessary to consider its applications in the QNC system. For 
example, Hayashi [14] suggested an improved butterfly network that allows the QNC for the 
transmission of one particle or two bit classical communication. Kobayashi et al. [15] proposed 
Constructing quantum network coding schemes from classical nonlinear protocols. 

The maximal entanglement between two senders enables perfect quantum 
transmission though it is impossible without prior entanglement even in the modification of the 
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previous QNC scheme [10]. In 2009, under the assumption that there is no prior entanglement 
shared among any of the parties, Kobayashi et al. [16] put forward a perfect QNC which can 
perfectly transfer an unknown quantum state from source subsystem to target subsystem, 
where both source and target are formed by the ordered sets of nodes. In 2010, Ma et al. [17] 
proposed an improved QNC via probabilistic teleportation based on the maximally entangled 
photons shared beforehand.  

Recently, teleportation has been actively investigated in both theoretics and 
experiments. With teleportation Alice can transmit an unknown quantum state to a remote 
recipient Bob [18-20]. In general, a pair of maximally entangled Bell states served as a secure 
quantum channel should be prepared in advance, and the sender can not always teleport a 
single-qubit to the receiver with unit fidelity and unit probability. Consequently, there is another 
kind of teleportation called as probabilistic teleportation [21], from which one can achieve the 
fidelity with a probability less than unit. In any case, teleportation has offered a much powerful 
method while transmitting an unknown quantum state. Unfortunately, the universal processor 
based on teleportation can not work for many participants transmitting different unknown states 
simultaneously, and thus we are faced with a new challenge in quantum communication that 
extends to global quantum communication networking. This work has been devoted to quantum 
networking that places emphasis on basic quantum effects and on emerging technological 
solutions leading to practical applications in quantum communications. 

In order to enhance the transmission rate of quantum network system, a novel 
teleportation-based QNC scheme is proposed to transmit two unknown states crossly over the 
butterfly network where two senders prepares two Greenberger-Horne-Zeilinger (GHZ) states in 
advance. While performing the controlled quantum teleportation [19-21] at intermediate node, 
two receivers can restore the original quantum states with probability 100%. Comparing with the 
previous QNC [17], the performed operation at the intermediate node over the butterfly network 
is for quantum operation, instead of the classical operation. At the receivers, with the help of the 
transmitted unitary operations, the initial quantum states can be restored completely. 

The paper is organized as follows. In section 2, for the description of QNC, some basic 
properties of the controlled quantum teleportation are presented with simplicity. In section 3, the 
QNC is proposed explicitly to transmit unknown states on the basis of teleportation in terms of 
superdense coding at the intermediate node crossly over the butterfly network. Then the present 
QNC is generalized to transmit two multipartite entangled states in section 4. The security 
analysis is illustrated on the basis of channel detection scheme in section 5. Finally, the 
discussion and summary are presented in section 6. 
 
 
2. Controlled Quantum Teleportation with Entanglement Analysis  

The three-photon-entangled Greenberger-Horne Zeilinger states (GHZ states) have 
formed the basis of a very stringent test of local realistic theories. They can be used for 
cryptographic scenario or for multi-photon generations of super-dense coding to reduce 
communication complexity. It is known that GHZ states are no long a theoretical imagery since 
they can be experimentally implemented by single photons in the hybrid entanglement states. 

In the controlled quantum teleportation [19-21], a third participant who may take part in 
the process of quantum teleportation as a supervisor is included in order to achieve the 
transportation. Without the assistance of the control operations, the receiver cannot recover the 
original state from the sender. 

Assuming that three participants, Alice, Bob and Charlie, prepare a non-maximal 
entanglement GHZ state beforehand, i.e., 

1
( 000 111 ) .

2
ABC ABCGHZ                                                                                                (1) 

An arbitrary unknown state
D

 on photon D is given by 

0 1 .m                                                                                                                          (2) 

 
To accomplish the transformation,Alice performs the Bell state analysis on the particles D and A 
 

,
ABC

m GHZ                                                                                                                 (3) 
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which can be rewritten as 
 

1
( ( 00 11 ) ( 00 11 )

2

( 00 11 ) ( 00 11 ) ),

BC BCmA mA

BC BCmA mA

   

   

 

 

        

        
                                        (4) 

 

where  and  denote the Bell-states given by 

1
( 0 0 1 1 ),

2
     

1
( 0 1 1 0 )

2
                                                               (5) 

 
After performing the Bell-state measurement on particles D and A, the original entanglement 
state can be transformed into the state on the pair of particles B and C. With the help of some 
unitary operations, the resulting state can be transformed in the form 
 

( 00 11 ) ,BCBC
                                                                                                              (6) 

from which the receiver Bob can recover the original particle  with the assistance of 

Charlie’scontrol operation performed on photon C. If Charlie would like to help Bob for the 

recovery of  , he measure the particle C on the bases of 
1

( 0 1 )
2

   .The entanglement 

state of particles B and C can be represented as 
1

(( 0 1 ) ( 0 1 ) ).
2

B BBC C C
                                                                (7) 

 
When Bob receives Charlie’s measurement results via a classical channel, he performs an 
appropriate unitary transformation to recover the original state conveniently. This controlled 
teleportation over the butterfly quantum network crossly is implemented. 
 
 
3. QNC via Controlled Teleportations of Two Unknown States  

In this section, we elaborate on our QNC scheme in which two unknown states are 
transmitted from the senders iA  to the receivers ( 1,2)iB i  crossly over the butterfly quantum 

network. Namely receivers 1B  and 2B  can obtain two unknown states 1m  and 2m  with the 

certainty. The topology of this quantum network is similar to that of the classical butterfly 
network, as illustrated in Figure 1. 

Two unknown states , {1,2}im i  , which will be transmitted from iA to iB , are denoted by 

 
0 1 ,i i im                                                                                                                       (8) 

 

where
2 2

1i i   . Two senders 1A  and 2A  prepare jointly two GHZ states given by 

11 21 1 11 21 1, , , ,

1
( 000 111 ) ,

2
A A G A A GGHZ                                                                                  (9) 

22 12 2 , ,22 12 2
, ,

1
( 000 111 ) ,

2 A A GA A GGHZ                                                                                  (10) 

where one sender 1A possesses photons 11A , 12A and 1G , while another 2A keeps photons 21A , 22A

and 2G . Six EPR pairs   are shared between the intermediate node C and sender iA , as well 

as receiver 1iB  . In addition, four EPR pairs shared by C and 1iB  are denoted by 1 , 2 , 

3 ,and 4 , respectively, where represents operation of plus mod 2. 
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 Encoding circuit            Decoding circuit  

Figure 1. The protocol for transmit two quantum 
states. im  is the particle which ought to be sent. 

The coding operation will be performed on the relay 
node C. 

 
Figure 2. The encoding circuit and the 

decoding circuit at the relay node C 
 

 

Table 1. The result of the Operation 
1 1( )

iM iU M
   

1 1( )
iM iU M
   Operation result 

01 (01)U   
1,

( 00 11 )
i i ii i A G 


  

00 (00)U   
1,

( 01 10 )
i i ii i A G 


   

10 (10)U   
1,

( 00 11 )
i i ii i A G 


  

11 (11)U   
1,

( 01 10 )
i i ii i A G 


  

 

Table 2.The result of the operation 
1 1 1( )

i iG M iH U M
   . 

1 1 1( )
i iG M iH U M
    Operation result 

1 00 (00)
iGH U


  

, 1 1

1 1

1 1

1
[ ( 0 1 ) 0

2

( 0 1 ) 1 ]
i i i

i i

i i A G

 

 
 

 

 



 
 

1 01 (01)
iGH U


  

, 1 1

1 1

1 1

1
[( 0 1 ) 0

2

( 0 1 ) 1 ]
i i i

i i

i i A G

 

 
 

 

 

 

 
 

1 10 (10)
iGH U


  

, 1 1

1 1

1 1

1
[( 0 1 ) 0

2

( 0 1 ) 1 ]
i i i

i i

i i A G

 

 
 

 

 



 
 

1 11 (11)
iGH U


  

, 1 1

1 1

1 1

1
[( 0 1 ) 0

2

( 0 1 ) 1 ]
i i i

i i

i i A G

 

 
 

 

 



  
 

 
Table 3. The Unitary Operation Which be performed on the particle , 1i iA   

here (00,01,10,11)iM   

 00 01 10 11 

iMV  1 0

0 1

 
 
 

 
0 1

1 0

 
  

 
0 1

1 0

 
 
 

 
1 0

0 1

 
 
 

 

iMW  1 0

0 1

 
  

 
0 1

1 0

 
 
 

 
0 1

1 0

 
 
 

 
1 0

0 1

 
 
 

 

Then the present QNC goes as follows. 
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Step 1 Two senders iA  prepare unknown states im  and GHZ states 
1 1,, ,i i i iA A G

GHZ


 in 

Eq.(9). Then the combined  quantum systems can be denoted as 
     

, 1, , 1,, , , , ,
,

i i i i i i i i i i i
im A A G A A G

m GHZ
 

                                                                                       (11) 

which can be rewritten as 

1, 1,, 1, , ,

1, 1,
, ,

1 1 1 1

1 1 1 1

1
( ( 00 11 ) ( 00 11 )

2

( 00 11 ) ( 00 11 ) ).

i i i i i ii i i i i i i i i i i i

i i i i i i
i i i i i i

A G A Gm A A G m A m A

A G A Gm A m A

   

   

 

 

 

 

        

        
          (12) 

Step 2 Each sende iA  performs the Bell-state measurement on particles im  and ,i iA

with four respective Bell states { , }    corresponding to results given by 

00 01 10 11{ , , , }M     . The entangled state of the remaining particles 1,i iA , and iG can be denoted 

as { ( ) :i iM M {00,01,10,11}} . Subsequently, the inverse unitary operation 1

iMU  will be applied 

on particle , 1i iA   of the resulting state 1( )iM  , where unitary operations 
iMU are given as 

 

00 01

10 01

0 0 1 1 , 1 0 0 1 ,

0 0 1 1 , 0 1 1 0

U U

U U

   

   
                                                                                   (13) 

It is easy to prove that 

1 1i i i iM M M MU U U
                                                                                                                    (14) 

 
Then the particle , 1i iA  is sent to receiver 1iB  via the edge 1i iA B  . At the same time, iA  

performs the same unitary operation 
iMU on one particle of the EPR pair   shared 

beforehand between iA and C. As soon as the operation being accomplished, the resulting 

particle is also delivered to C. 
Step 3 At node C, as soon as it receives the particles from iA , the Bell-state analysis will 

be performed on each pair of the particles with results corresponding to {00,01,10,11}i i iA a b  . 

After that, an encoding operation is employed on 1 1a b  and 2 2a b  in succession, as is illustrated in 

Figure 2(1). Here, the CNOT-gate is deployed to accomplish the encoding operation, i.e.,

1 21 , 2 ,a ap C a  
1 22 , 2b bp C b and 

1 22 , 2b ap C a . After that the unitary operations
1 1b pU and

2 3p pU are 

respectively applied on the particles of four EPR pairs which are shared between C and 1iB  , 

i.e., 
1 1 1b p C

U  , 
2 3 1 12 3,P p b pC C

U U  , and 
2 3 4P p C

U  . Finally, the resulting particles 

corresponding to 
1 1 1b p C

U   and 
2 3 2P p C

U   are delivered to B2, while the particles of 
1 1 3b p C

U   

and 
2 3 4P p C

U   will be sent to B1. 

Step 4 When 1iB   receives the particles from C, the Bell-state analysis are applied on the 

particles of the resulting EPR pairs. Consequently, 1iB  recovers the classical bit string 1 1 2 3b p p p . 

After the operation, 1iB  obtains 1 1a b and 2 2a b with the decoding circuit in Figure 2(2). Then the 

unitary operation
1i iM MU

 is performed on the yielded state 1
1( ) ,

iM iU M
 i.e., 

1

1
1( ) ,

i i iM M M iU U M



   According to Eq. (14), obtaining state

1 1( ) ,
iM iU M
   the result is shown 

in Table 1. 
Step 5 The sender 1iA  performs Hadamard operation on the particle 1iG  to restore the 

initial state 1im  , i.e., 
1 1 1( )

i iG M iH U M
   . The result is shown in Table 2. 
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As soon as the above-mentioned transformation is accomplished, the particle 1iG  will 

be measured by the sender 1iA  .Then the initial state of 1im  can be recovered by the receiver

1iB  after performing a suiTable unitary operation, as shown in Table III. For example, if iG  is 

measured with 0 , the resulting state of 1,i iA  can be expressed as one of the four states 

 
0 1 , 0 1 , 0 1 , 1 0 .i i i i i i i i                                                                     (15) 

 
Otherwise, the state of 1,i iA  can be obtained as 

0 1 , 0 1 , 0 1 , 0 1 .i i i i i i i i                                                                      (16) 

To accomplish the transformation, four recovery unitary operation are introduced in 
Table 3. Here, if iG is measured with 0 , the operation

iMV will be applied on 1,i iA  . Otherwise, the 

operation 
iMW  is applied. After the unitary operation, no matter what result is obtained, the 

receiver 1iB  can resume im from ( )
i iG M iH U M . 

 

 

 

 

 

 

 

 

 
Figure 3. The protocol for transmission two multipartite entangled states. The particles ,i kx  are 

the multipartite entangled states which ought to be sent to the receiver iB . 

 
  

4. QNC with multipartite entangled states  
In this section, with the assistance of the d-dimensional controlled quantum teleportation 

scheme [22], we generalize the protocol in section 3 to one protocol for transmitting two 
multipartite n-qudit entangled states 

,1 ,, ,i i nx x
m


crossly over the butterfly network, where 

,1 ,,1 ,
,1 ,

1

, , ,1 ,, ,
, , 0

, , .
i i ni i n

i i n

d

x x i i nx x
x x

m x x




  


                                                                 (17) 

The complex coefficients 
,1 ,, ,i i nx x   satisfy the following constraints 

,1 ,

,1 ,

21

, ,
, ,

1.
i i n

i i n

d

x x
x x




 


                                                                                                                  (18) 

Assuming that two senders 1A and 2A share n+1 generalized GHZ states beforehand 

11, 21, 1,

11, 21, 1,

1

, ,
0 , ,

1
,

k k k

k k k

d

A A G
l A A G

GHZ lll
d





                                                                                      (19) 

12, 22, 2,

12, 22, 2,

1

, ,
0 , ,

1
,

k k k

k k k

d

A A G
l A A G

GHZ lll
d





                                                                                     (20) 
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where particles 11,kA , 12,kA and 1,kG  are held in 1A ’s hands while particles 21,kA , 22,kA and 2,kG ,are 

kept by 2A , {1, 2, , }k n   , illustrated in Figure 3. In addition 6n generalized EPR states 

( )

1

1 d
d

k
t

tt
d 

                                          (21) 

are prepared by C and iA as well as iB . In order to facilitate description, 4n generalized EPR 

pairs between C and iB are denoted by 1, ,k 2, 3,,k k   and 4,k , respectively. 

The process of our protocol is as follows: 
Step 1 Sender iA  prepares n-qudit unknown state 

,1 ,, ,i i nx x
m


and n generalized GHZ 

states. The whole quantum system is described as 
 

,1 , , , 1 , , ,
1, , , ,

.
i i n i i k i i k i k

n
kx x A A G

m G H Z


  


           (22) 

Then the n generalized Bell-state measurement (GBSM) with the basis of 
 

,

, ,

21

, ,
0

1 i k

i k i k

id la
d

a b i k d
l

U e l l b
d





                                                                                         (23) 

 
is performed on the particles ,i kx and , , {1, 2, , }i kA k n   , where ,i ka , , {0,1, , 1}i kb d  . Then 

state of the remaining particles 1, ,i i kA and ,i kG can be written as: 

    

,1

1 2

1 2

21

, , ,
, , 0

, , , 1, ,
1

1
( )

, , .

n
k i kk

n

n

id
l ad

i k l l ln
l l l

n

k i k k i k i k i i kd d
k

M e a
d

l b l b G A




 






 

       






                                                                              (24) 

After that, the corresponding unitary operation 
,

1

Mi k
U  is performed on particle , 1,i i kA   in state

1,( )i kM  . After that the resulting particles is delivered to receiver 1iB   via the edge 1i iA B  . 

Meanwhile, the unitary operation 
,i kMU is applied on particles of generalized EPR pairs 

( )d of 

iA  for superdense coding. After that, the n particles are sent to C. 

Step 2 At C, after it obtains the particles from iA , the GBSM is jointly performed on the 

particles that have been received from iA  and the particles in it’s hands. After that, k classical 

bit string pairs ,i ka , ,i kb  and 1,i ka  , 1,i kb   are both created. Then an encoding operation similar to 

that of operation in section 3 is applied on ,i ka , ,i kb  and 1,i ka  , 1,i kb  . After that, the unitary 

operations
1, 1,,k kb pU  and

2, 3,,k kp pU will be performed on the particles of 4k generalized EPR pairs 

shared between C and 1iB  , i.e., 
1, 1,, 1, ,

k kb p kU   
2, 3,, 2,k kp p kU   

1, 1,, 3,,
k kb p kU  and

2, 3,, 4,k kp p kU  . The 

resulting particles will be delivered to 1iB   respectively. 

Step 3 At 1iB  , after applying the GBSM on the pairs of corresponding EPR particles, 

the strings 1, 1, 2, 3,, , ,k k k kb p p p  are restored, subsequently. Then the unitary operation 1, 2,,k kp pU
is 

performed on the received particles from iA , i.e., 
1, 2, ,

1
, 1,( )

k k i kp p M i kU U M
 .On the basis of the 

following property 
 

, 1, , 1,i k i k i k i kM M M MU U U
                                                                                                                (25) 

 
in the d-dimensional Hilbert space, one obtains 
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1,1, 1

1, 1

1

1, , 1,

2 21 1

1, 1, , ,
0 , , 0

1, 1,
1 ,

1
( )

,

n
k i ki k k

i k n

n

i k i i k

i id d
l alad d

M i k i k l ln d
l l l

n

k i k k i kd d
k G A

U M e l b l e a
d

l b l b

 
 



 

  

 
 

 


      

        

 






                   (26) 

 
Then the decoding operation is applied on the strings 1, 1, 2, 3,, , ,k k k kb p p p . After that, ,i ka , ,i kb  and 

1,i ka  , 1,i kb  can be achieved by 1iB  . 

Step 4 In order to recover the initial states in 
1,1 1,, ,i i nx x

m
 

， 1iA  performs the 

generalized d-dimension Hadamard gate operation on particles , 1,i i kG   

 

1,

1
2 /

, 0

1
i k

d
ijl d

G
l j

H e j l
d








                                                                                                        (27) 

 

i.e., 
1, 1, 1,( )

i k i kG M i kH U M
   , which can be rewritten as 

 

1, 1,1

1

1

1, , 1,

2 21 1(

1, , ,2 1
, 0 , , 02

1, 1,
1 ,

1

,

n
i k k i kk

n

n

i k i i k

il id dj a l add d
i k l ln d

l j l l

n

k i k k i kd d
k G A

e j l l b l e a

d

l b l b

 
 

 

    


 

 


     

        

 






                          (28) 

After the measurement of particles 1,i kG  at 1iA on the base of { 0 , 1 , , 1 }d  , the initial state 

,1 ,, ,i i nx x
m


 

 
 
5. Security analysis  

So far we have consider the design of the QNC based on the multi-photon entangled 
states via teleportation. In this section, we investigate the security of the present QNC scheme. 
 

5.1. The security analysis of the channel 1i iA B   

In order to detect the channel’s security, an EPR pair   which is shared by iA and 1iB 

is introduced as the detection channel. Before particle , 1i iA  is delivered, the CNOT-gate 

operation alC  will be performed on the detection particle 

 
cos 0 sin 1 .ie                                                                                                               (29) 

 
Here subscript a denotes the particle of the EPR pair in iA ’s hands. And the result can be 

expressed as 

,0 ,1
,

0,1

(cos sin )
( 0 0 0 0 ( 1) ),

2

i
l lC

a a b a b
i

C i i


  

  
  






                                         (30) 

here ,i j  is the Kronecker symbol. After the operation, the detection particle   will be 

entangled with the detection channel  , and the three-particle entanglement particles are 

generated correspondingly. 
Assuming that Eve’s strategy is attack on the channel C with a probe particle   

, , ,a b                                                                                                                           (31) 

after the unitary operation U, the entanglement state can be denoted as 



TELKOMNIKA  ISSN: 2302-4046  
 

 
Network Coding-Based Communications Via the Controlled quantum... (Dazu Huang) 

835

, , 1 2 1 20 0 0 1 1 0 1 1 .a b a b a b a b a bU E E E E                                                  (32) 

Here 1 2 1 2,E E E E   and 1 2 2 1E E E E  0 . Eq. (30) can be rewritten as 

'
, , , 2

1

1 2

1
( ) [cos 0 0 0 sin 0 0 1 ]

2
1 1

[cos 0 0 0 sin 0 1 1 ] [cos 1 0 1
2 2

1
sin 1 0 1 ] [cos 1 1 1 sin 1 1 0 ] .

2

C i
a a b a b l a b l

i
a b l a b l a b l

i i
a b l a b l a b l

C U e E

e E

e E e E


 



 

    

  

  





 

   

   

     

                                     (33) 

At 1iB  , as soon as it receives the particle  , the CNOT-gate operation ,b lC  will be performed 

on the particle of the EPR pair which already in it’s hands and the particle  . The result can be 

expressed as: 
 

'
, 1 2

1 2

1 1
[cos 0 0 0 sin 0 0 1 ] [cos 0 1 1 sin 0 1 1 ]

2 2
1 1

[cos 1 0 1 sin 1 0 0 ] [cos 1 1 0 sin 1 1 1 ] .
2 2

C i i
b a b a b a b a b

i i
a b a b a b a b

C e E e E

e E e E

 
    

 
   

    

   

 

 

     

      
 (34) 

 

Obviously, '
,

C
bC      . Therefore,   can not be extracted from 'C , the eavesdropper 

Eve can be detected. With the assistance of the detection operation, the quantum channel 1i iA B 

’s security is guaranteed. 
 

5.2. The security analysis of the cross-channel i iA B  

To ensure the security of the cross-channel, the secondary detection will be introduced. 
For clarity, we focus on the channel 1A C  to illustrate the details of the detection. The rest of the 

cross-channel’s security analysis is similar to it. 
The details of the detection on the channel 1A C can be illustrated as follows: At 1A , in 

addition to the EPR pair   which encoded the information with a local operation on a single 

particle, 1A  prepares an ordered N-1 pair in state  . After that, the N ordered EPR pairs will be 

divided into two parts, namely, ( )iP L  and ( )iP M . 1A sends the L sequence to the relay node C, 

and the eavesdropper Eve will be checked by the following procedure: Firstly, at the node C, a 
number of the particles from the L sequence will be chosen randomly and it will be perceived by

1A . After that, two sets of MBs, says, z and x will be chosen to measure the particles. When 

the operation is accomplished, C tells 1A which MB it has chosen for each particle and the 

outcomes of it’s measurement. After 1A uses the same measuring basis as which be used at the 

relay node C to measure the corresponding photons in the M sequence and checks with the 
results of C, if there is no eavesdropping exists, their results should be completely opposite. 

Supposing that an attacker Eve may access to the quantum channel to acquire some 
information, owing to the particles are entanglement states, the most possible attack is the 
attack n the entangled state  , namely, 

, , ,
, 0,1

,a b a b
a b

a b 


                                                                                                          (35) 

where ,a b describes Eve’s probe state, a and b are single-photon states of 1A  and C in 

each EPR pair respectively. We describe Eve’s effect on the system as 

 

00 010, 0 0, 1, ,
C

E E E E                                                                                      (36) 
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10 111, 1 ' 0, ' 1, .
C

E E E E                                                                                       (37) 

 
Here Eve’s probe can be modeled by 

'
,

'
E

 
 
 

  
 

                                                                                                                             (38) 

the complex numbers must satisfy 
2 2

1,                                                                                                                               (39) 

 
* '* '* 0.                                                                                                                             (40) 

 
The Eve’s eavesdropping will introduce an error rate 

2 2 2 2
' 1 1 ' .e                                                                                                       (41) 

 

Here the probability of the information which Eve can maximally gain will be calculated as 

follows. Assuming that at 1A , the measurement result of the EPR particle is 1 , then the state of 

the system composed of the relay node C’s particle and Eve’s probe can be described by 

00 01
ˆ' 0, 0, 1, .E E                                                                                                   (42) 

 
After that, the state of the system reads 

2 2 * *
00 00 01 01 00 01 01 00' 0, 0, 1, 1, 0, 0, 1, 0, .                                  (43) 

 
After encoding of four different unitary operations U00, U01, U10, U11 which have been elaborate in 
section 3 with the probabilities p0, p1, p2, p3,here p0+ p1+ p2+ p3= 1, the state can be denoted as 

2 2 *
0 3 00 00 01 01 0 3 00

2 2*
01 01 00 1 2 00 00 01 01

* *
1 2 00 01 01 00

'' ( )( 0, 0, 1, 1, ) ( )( 0,

1, 1, 0, ) ( )( 1, 1, 0, 0, )

( )( 1, 0, 0, 1, ),

p p p p

p p

p p

        

          

      

    

   

  

                         (44) 

 
which can be rewritten in the orthogonal basis 00 01 00 01{ 0, , 1, , 1, , 0, }     

*2
0 30 3

2*
0 3 0 3

*2
1 2

1 2
2*

1 21 2

''

00( )( )
00( ) ( )

( )( )0 0
( )( )0 0

p pp p

p p p p
p pp p

p pp p




  


 



 
 

  
  

  

.                                                       (45)  

 
The maximal information I0 that can be extracted from this state is given by the Von Neumann 
entropy, namely, 

3

0 2
0

log .i i
i

I  


                                                                                                                       (46) 

where ( 0,1,2,3)i i   are the eigen values of '' , which can be expressed as 

2 2
0,1 0 3 0 3 0 3

1 1
( ) ( ) 16 ( ),

2 2
p p p p p p e e                                                                           (47) 

 

2 2
2,3 1 2 1 2 1 2

1 1
( ) ( ) 16 ( ).

2 2
p p p p p p e e                                                                            (48) 

 
Assuming that the probability of the four operations is equal to each other, namely, 1 4ip  , the 

expression can be simplified to 
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0,1,2,3

1 1 1
. ,

4 2 2
e                                                                                                                       (49) 

namely, 

0,2 1,3

1
, .

2 2 2

e e                                                                                                                        (50) 

Then the entropy can be expressed as 

0 2 2

1
(1 ) log log .

2 2

e e
I e e


                                                                                                        (51) 

 
After the derivative operation, it can be concluded that the function 0 ( )I e has a maximum at 

1 2e   . This means that if the eavesdropper Eve exist, she has to face a detection probability

0( ) 0e I  . If she wants to gain the full information ( 0 1I  ), the detection probability is 1 2e  . 

This probability is big enough to detect any effective eavesdropping attack. 
 
 
6. Discussion and summary  

The protocol which has been discussed in section 3 is mainly based on the controlled 
quantum teleportation and the superdense coding. The integrator of those two technologies will 
make the transmission efficiency to be higher. Comparing with those trivial protocols, the 
present one has favorable and unfavorable aspects. In our scheme, there is no classical bit 
communicated at the bottleneck channel, namely, all the channel of the butterfly network is the 
quantum channel. The unity of the channel will make the deployment of the protocol much more 
convenient. Another improvement is that under our protocol, the probability of the particle being 
resumed by the receiver is one. While those quantum network coding protocols [14, 17] which 
adopted the classical bits as the complement of the encoding operation sending 1.5 times on 
average to guarantee that the receiver can obtain the sender’s particle accurately. Relative to 
the other protocols, the transmission efficiency of our protocol is greatly raised. Also, there is 
still having some shortcomings in our protocol, like many probabilistic teleportation protocols 
[13-14, 20-21], our protocol takes use of non-maximally entangled resources without first 
converting to a maximally entangled pair via local filtering or entanglement concentration. There 
is still existing some specificity in this channel. 

In summary, it is provided that two senders sharing two non-maximally entangled GHZ 
pairs, a protocol is proposed to transmit two 2-level entangled states which have been shared 
by the two senders over the butterfly network crossly. If one particle transmission over the side 
links and two particles communication on the other channels are allowed, after the transmission, 
both of the receivers can reestablish the initial states with a certain probability 1. Furthermore, 
this protocol has also been generalized to transmit two multipartite entangled states. Finally, on 
purpose to ensure the security of the network transmission, several potential attack strategies 
were discussed and the appropriate detection mechanism was designed. 
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