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 Many important subtle changes in the environment are invisible to the naked 
human eyes. These subtle changes occur because of colour variations, such 
as blood flow in a human face that leads to face colour change, or motion 
variations, such as vena movement under human skin and vibration of 
buildings. The human eye requires optical microscopes to detect these 
variations. Alternatively, new technologies, such as high-speed imagery and 
computer processing, can be used to detect these variations. These 

computerised microscopes depend on computation rather than optical 
amplification to amplify subtle colour and motion changes in videos. The 
most popular technique to achieve computation-based microscope is the 
Eulerian video magnification (EVM). However, several challenges in EVM 
still need to be solved to meet the requirements of real time and video 
quality. This paper presents a comprehensive study of EVM methods and 
reviews the related literature. The strengths and drawbacks of existing works 
are discussed, and the important research fields and challenges in the area of 

EVM are concluded.  
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1. INTRODUCTION 

In spite of the fact that the visual system of a human has a limited perceptibility in either spatial or 
temporal domains [1], technology can reveal many of the imperceptible signals that fall outside human 

perceptual range. Many of these signals carry important information, such as a slight difference in human 

skin colour according to blood circulation. Although this difference is concealed to our eyes, it can be used to 

estimate the heartbeat number [2-3]. Similarly, motion, which is invisible to the naked eye and has low 

spatial energy, can be revealed by magnification, which allows us to exploit interesting behaviour [4]. 

Figures 1 and 2 provide examples of magnification for colour and motion variations, respectively. Figure 1(a) 

shows a man’s face as it appears to the naked eye, and no changes can be seen. The processed images in 

Figure 1(b) clearly reveal the variation in the colour of his face that is caused by his heartbeat. Similarly, 

Figure 2(a) shows three frames of an eye that show no change, and Figure 2(b) shows a magnification of the 

small pattern of the eye.  

Our environment is crowded by small and significant temporal variations. Several approaches and 
schemes have been evolved to visualise these variations in either motion or colour, thereby resulting in the 

so-called computerised microscope. Computerised microscopes depend on computation rather than optical 

magnification to amplify subtle colour and motion changes in high-speed or ordinary videos. The success of 

algorithms has supported the development of modern techniques that discover unnoticeable signals in videos. 
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The capability to magnify unnoticeable variations in an imaging video has opened the door for applications in 

biology, healthcare and mechanical and material engineering.  

In 2005, a research group from the laboratory of computer science and artificial intelligent in the 

Massachusetts Institute of Technology (MIT) proposed a video magnification algorithm based on cluster 

trajectories [4]. The algorithm was used to amplify subtle colour or motion changes over time, which made 

invisible changes visible. In [5], the authors proposed using a cartoon animation filter to create visible motion 

construction. These algorithms depend on a Lagrangian perspective, in which the pixel path is temporally 

tracked over video frames. However, these algorithms are computationally costly because they are based on 
accurate motion estimation. Moreover, they cannot be verified artefact-free at areas of dense motions. By 

contrast, Eulerian based-methods amplify the intensities of pixel variation over time in a multiple scale 

manner. In Eulerian methods, motion magnification does not clearly estimate motion but rather extends it 

through amplifying temporal colour changes at fixed positions. The Eulerian methods are similar to optical 

flow algorithms in using differential approximation form [6-7].  

The approach of Eulerian video magnification (EVM) was firstly proposed by MIT research group 

in 2012 [8]. The basic methodology of EVM considers the time series of pixels and amplifies any variation in 

a specified interest band of temporal frequency. For example, the selected frequencies in Figure 1 consist of 

plausible human heart rates to amplify a temporal band. The amplification exposes the dissimilarity of 

redness as blood flows through the face [9-10].  

 

 

  

(a) Source frames (b) Amplified frames 

 

Figure 1. Colour variation magnification [8] 

 

 

  
(a) Source frames (b) Amplified frames 

 

Figure 2. Subtle motion variation magnification [9] 

 

 

Since 2012, EVM has been a popular research area in several interesting applications, such as 

extracting the depth and velocity of hot air [11], human feeling detection [12], Android smartphone  

software [13], plasma physics [14], sound reconstruction from a distance by the vibration measurement of an 

item in a high-speed video [15], rescue [16], biology [17], mechanical engineering [18] and civil engineering 
[19]. EVM may also have significant potential in diagnostic and monitoring in medical applications. Most 

medical applications depend on the recovery of temporal features using the capabilities of colour 

amplification of EVM, such as measuring vital signs without touching patients [10, 20-27] and revealing 

otitis media in infants [28].  

The EVM technique can be classified into linear- and phase-based EVM. In linear approaches, 

motion in video is linearly proportional to the intensity variation over a first-order expansion of Taylor series. 

A video sequence is considered an input, spatial decomposition is applied and frames are filtered by a 

temporal filter. The produced temporal region is amplified to expose hidden information. Although this 

procedure is simple and rapidly detects small motion variations, it easily breaks down when the 

magnification factor is large because the Taylor approximation becomes inaccurate. To overcome this 

problem, phase-based magnification (PVM) replaces the linear approximation with a Fourier decomposition 
by complex steerable pyramid [29]. The variations in phase of the pyramid coefficients over time are 

proportional to the motion in different video frames. These variations can be temporally processed and then 

amplified to visualise the motion. In contrast to the linear-based method, the phase-based method has a 

higher complexity and longer processing time, but it can support larger amplification of the motion. Eulerian 
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linear and phase-based approaches operate faster and suffer less noise than the Lagrangian-based video 

magnification. However, EVM approaches do not work well for large and arbitrary motions.  

In this paper, we present a comprehensive study of EVM methods and review the latest work in this 

area. We also compare the existing works in terms of quality, speed and amplification factor. The rest of the 

paper is organised as follows. Section 2 describes EVM. Section 3 explains a linear-based EVM. Section 4 

reviews the existing works that use linear EVM. Section 5 describes a phase-based EVM. Section 6 reviews 

the existing works that utilise phase-based EVM. Section 7 presents a brief comparison of different existing 

works. Section 8 elaborates the conclusions. 

 

 

2. EVM 

EVM can reveal and amplify the small motions and changes in videos. EVM is applied to every 

level within a pyramid and not over the original pictures because the goal is to amplify the pyramid levels 

that contain the movement frequencies. This technique then multiplies the desired frequencies by a factor 

known as magnification factor α, which is defined by the user. EVM amplifies the actual motion and allows 

us to recognise movements that are undetectable to the naked eye. The magnified values of the desired 

frequency are added back to the not magnified ones of the same level to obtain the final video with 

exaggerated motion.  

Although many methods use the same general principle as that of EVM, they differ in the way they 

work. One of the major differences amongst these methods is the type of pyramid utilised in the algorithm. 

The linear video magnification (LVM), which was presented by Wu et al. [8], applies the Laplacian pyramid 
decomposition technique to the input video to decompose the video sequence according to spatial frequency, 

which is followed by temporal filtering. The resulting output signals of this operation are then magnified by a 

factor and added back to the signals that are entered to the temporal filter. However, this method supports 

low magnification factors. To solve this problem, Wadhwa et al. [29] proposed a Eulerian method based on a 

technique called ‘complex steerable technique’ [30-31], which was inspired by phase-based optical  

flow [32-34]. This method accepts large magnification factors, possesses fewer artefacts and introduces less 

noise than LVM. However, this method requires a longer time processing due to the complexity of piping 

representation of the steerable pyramid. This method can be over 21 times as long as the LVM technique. In 

[29], the authors developed their previous work by using a new pyramid in [35-36], which they called the 

Riesz pyramid, to reduce execution time. Liu et al. [37] proposed a way to improve LVM after processing, 

which is called enhanced EVM (E2VM).  

 E2VM supports magnification factors with greater and less noise than LVM. The efficient motion 
magnification system (EMMS) method has been developed to improve processing speed [38], which depends 

on wavelet decomposition. This method supports large amplification factors, improves the speed of 

implementation and reduces noise. Section 7 (comparisons) summarises the main differences amongst  

these methods. 

 

 

3. LINEAR-BASED EVM 

Small motion amplification can be achieved through processing [4-5]. In optical flow, motion 

magnification can be produced via temporal processing by using the first-order Taylor series  

expansions [6-7]. The goal of EVM is to process the time series of colour values for each pixel in spatial 

domain independently by applying a standard 1D temporal signal processing to each time series to amplify a 
specific band of interest temporal frequencies. The input video frame is decomposed into distinct spatial 

frequency bands using a full Laplacian pyramid [8, 39-42]. The Laplacian pyramid is a data structure in 

which an image is downsampled at successively sparser densities until no further downsampling is possible. 

The Laplacian pyramid depends on an analysis pyramid for videos that is based on a Gaussian pyramid.  

The Laplacian pyramid method for analysis video processing time has become less popular than 

before. [8-9] showed that this method becomes useless as the magnification factor increases because noise 

increases linearly with the increase in magnification factor. This method is useful in magnifying colours 

when the magnification factor is small. Figure 3 shows a working LVM mechanism.  
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Figure 3. Overall structure of the linear-based-EVM [8] 
 

 

3.1.   Mathematical Analysis for Linear-Based EVM 

This section explains the linear-based EVM mathematically. I (x, t) denotes the intensity of the input 

image at a certain position x and time t. Observed intensities can be expressed with respect to a displacement 

function δ (t) given that translational motion is applied to the image. Therefore, I(x, t) can be written as I(x, t) 

= f (x + δ(t)) and I( x , 0) = f (x). The main objective of motion magnification is to synthesise  

the signal, that is,  

 

))()1((),(ˆ txftxI 
 (1) 

 

where, α is an amplification numerical factor. The video frame is approximated on the basis of the 
expansion of the first-order Taylor series at time t. The displaced frame f (x + δ(t)) in the first-order Taylor 

expansion around x is given by 

 

 (2) 

 

B(x, t) is the output of a temporal bandpass filtering process for I(x, t) in each x-position. The 

motion signal δ(t) is within the passband boundary frequencies of the temporal filter, that is, 

 

 (3) 
 

B(x, t) is amplified by amplification factor α and added back to the original frame (I(x, t)). The 

resulted frame is computed in accordance with,  

 

 (4) 

 

As shown in (2), (3) and (4) are combined, and we obtain the approximated amplified frame as,  

 

 (5) 
 

The expansion of the first-order Taylor holds for the amplified motion signal, (1+α)δ(t), and relates 

to the amplification of the temporally bandpassed signal to motion magnification. As shown in (6) denotes 

the processed output.  
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Figure 4 demonstrates the amplification process for a single sinusoid. A cosine wave with a low 

frequency and a relatively small displacement (δ(t)) can be approximated by an expansion of the first-order 

Taylor series. This procedure results in an efficient approximation for the signal at time t + 1. 

 

 

 
 

Figure 4. Illustrations of amplifying spatial translation after temporal filtering 
 

 

3.2.   Pyramid Decomposition 

A pyramid is the process of decompositions of images in different scales spatially. The two most 

popular pyramid decomposition approaches are Gaussian and Laplacian. Gaussian pyramid is constructed by 

smoothing the original image with a Gaussian filter and then scaling it down. A Gaussian pyramid consists of 

a sequence of lowpass, downsampled pictures. The Gaussian pyramid is similar to a Laplacian pyramid; at a 

specific level of each image of the Laplacian pyramid is the difference between two corresponding 

neighbouring levels of the Gaussian pyramid. The smallest level is merely preserved. As a result, the 

difference images can be used to reconstruct the original image. However, Laplacian pyramid can be 

assumed to be a sequence of bandpass, downsampled images [39]. Figure 5 illustrates the Gaussian and 

Laplacian pyramid decompositions. 
 

3.3.   Temporal Filter 

A temporal filtering process is applied to the series of the temporal pixels in each spatial band of the 

spatial pyramid construction to extract the interest frequency bands. A temporal bandpass filter is used to 

extract motions or signals that are intended to be amplified. 

According to the application utilised in the algorithm, users should be able to control the frequency 

band interest. However, the frequency band can be automatically selected in some cases.  

Filter selection also depends on the type of the application used. For example, a filter with a wide 

pass band is often preferred for motion magnification, whereas a narrow-passband filter is preferred for 

colour amplification, such as blood flow, because the latter results in less noise distortion. However, for real-

time implementation for motion magnification and colour amplification, low-order IIR filters are convenient 
to use. Various frequency responses of several types of temporal filters are shown in Figure 6. 

 

 

  
 

Figure 5. (a) Gaussian pyramid (b) Laplacian pyramid 
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Figure 6. Temporal filters types that are used in [8-9] 

 

 

4. EXISTING WORKS BASED ON LINEAR EVM 

Several works in the field of EVM based on the LVM method have been published. In [22], the 

EVM method was used to measure the time of a pulse crossing without direct contact. The benefit of 

measuring pulse time crossing is to determine blood pressure, heart rate and stress. Two areas of study, 
namely, wrist and neck, were selected to calculate the pulse transit time. The results of this method were 

verified by comparing them with the results of the devices used to determine the pulse, such as the 

electrocardiogram; the results were close. 

In [23], the authors used Eulerian method to extract the form breath wave of movement from the 

upper body of different breathing patterns (normal breath, hold breath, quick breath and deep breath) rapidly 

and accurately from the video sequence. The video must contain the head and chest area for accurate results.  

In [21], Eulerian technique was used to detect neonatal diseases with limited movement, such as 

epileptic seizures and life-threatening apnoea events. The disease category included epilepsy and epileptic 

seizures in neonates. This easy-to-use method can be used in a patient’s home or in a hospital, specifically in 

the neonatal intensive care unit, to monitor newborn without devices connected to the infant. 

In [20, 43] EVM was introduced to a new application. The method was used to measure wrist 

pulses. The method can also analyse the signal of the wrist pulse because vital information can be extracted 
from wrist pulse signals that affect a person’s health status. As a result, the EVM method can be utilised to 

predict essential cardiovascular functions. 

The authors in [44] adopted the EVM algorithm to detect and measure the soot propensity of a 

flame. Other authors have used EVM in face spoofing attacks because facial biometrics is vulnerable to 

fraud. The authors in [45] used Eulerian method for face recognition and detection of face spoofing 

techniques to improve the practicality of face biometrics. 

Liu et al. [37] proposed an enhancement to EVM to improve the work of LVM. A pixel-level 

motion analyser was used to capture and amplify motion. The method uses LVM as an analyser for 

spatiotemporal motion. E2VM utilises image warping to magnify the temporal motion of the video based on 

the former motion mapping. Although the image wrapping technique provides an improved performance 

method to handle the frame noise in the postprocessing, the computation time required is also increased. 
However, the method supports larger amplification factors with less noise distortion and fewer artefacts than 

the LVM method. 

 

 

5. PHASE-BASED EVM 

The Eulerian LVM supports small factors of magnification. The main drawback of the Eulerian 

LVM method is the ability to amplify noise when the magnification factor is increased. The authors in [29] 

accordingly developed a motion-processing method that is based on complex-valued steerable technique  

[30-31] and inspired by phase-based optical flow [32-33] and motion without movement [41]. This method 

supports large amplification factors and has less noise distortion than linear-based EVM. 

The phase-based EVM method does not increase spatial noise because the method modifies the 
phases instead of amplitudes. As a result, noise is translated rather than amplified when the amplification 

factor is increased. Although the computation of local motions can result from the phase variations of the 

complex steerable pyramids, increasing the phase variations by a multiplicative factor can amplify subtle 

motions. The modified video is reconstructed after amplifying the motion temporally. 
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The main difference between linear- and phase-based EVM is in the spatial decomposition used. 

The phase-based uses steerable pyramids. These pyramids result in an efficient and accurate linear 

decomposition for video frames in scale and orientation sub-bands. The basic functions of the transform are 

similar to Gabor wavelets [46], which are sinusoids windowed by a Gaussian envelope [30, 47-48].  

The method links phase and motion by manipulating the phase variations in videos. The method also 

avoids the flow vector computation. However, this method requires high processing time. Figure 7 shows the 

working mechanism of PVM.  

 

 

 
 

Figure 7. General structure of phase-based EVM [29] 

 

 

5.1.   Mathematical Analysis for Phase-Based EVM 

The phase-based approach depends on complex-valued steerable pyramids given that local motions 

can be measured and modified. The intensity profile (f) of a 1D image under global translation over time (t), f 

(x + δ(t)), for a movement function δ(t) is considered. A sequence is assembled with the motion modified, f 

(x + (1 + α) δ(t)), to a magnification factor (α).  

 The displaced intensity profile of the image f(x + δ(t)) can be written as a sum of complex sinusoids 

using Fourier series decomposition, that is, 
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where every band corresponds to one frequency (ω). The complex sinusoid is the band for frequency 

ω, that is, 

 

 (8) 
 

The phase ω(x + δ(t)) contains motion information because Sω is a sinusoid. This condition can 
cause motion manipulation by phase modification. 

A DC balanced filter is used to filter the phase ω(x +δ(t)) temporally for separating motion in 

specific temporal frequencies. Only the DC component (ωx) is assumed to be removed. This assumption 

results in,  

 

 (9) 

 
The bandpassed phase Bω(x, t) is multiplied by the frequency (ω), and the phase of sub-band Sω (x, 

t) is increased by this amount to obtain the sub-band with the magnified motion.  
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The result in (10) shows that Ŝω (x, t) is a complex sinusoid, and the motion ratio between Ŝω (x, t) 

and the input is exactly (1 + α) times. The motion-magnified video can be reconstructed by summing all the 

sub-bands to acquire the motion-magnified sequence f(x + (1 + α) δ(t)).  

 

5.2.   Spatial Filtering: Complex Steerable Pyramids 

The steerable pyramid [30-31, 48, 50] is considered an over complete transform given that an image 

is decomposed according to spatial scale, orientation and position. Gabor wavelet [52] is one of the basic 

functions of the transform, including steerable sinusoids windowed by a Gaussian envelope. 
A 2D discrete Fourier transform computation is used for all of the video frames, and spatial filters 

with different sizes and orientations are subsequently applied. This procedure produces a linear multiscale 

and -orientation image decomposition, which is called a steerable pyramid. An array of compound numbers 

is at each level of the pyramid and for each element; the amplitude and phase are computed. The complex-

valued pyramid permits measurement of local amplitude and phase, which are exploited to process motion. 

Figure 8 shows the construction of the steerable pyramid. 

 

 

 
 

Figure 8. Steerable pyramid construction 

 

 

5.3.   Temporal Filter 

This process aims to isolate motions in specific temporal frequencies to be magnified. When the 

pyramid is constructed, the phase on each spatial scale and orientation are isolated. Their differences are then 

determined, and a process of temporal bandpass filtering is applied. The key to improve the filter 

performance is to amplify either colour alterations or local phase variations, which can be achieved by 

maximising the signal-to-noise ratio of the temporal variations. Temporal and spatial filtering is applied to 

the variations to eliminate components that correspond to noise and maintain components that correspond to 
the signal for improving the signal-to-noise ratios. Temporal filtering can also isolate a signal of interest 

because various motions occur at different temporal frequencies  

Narrowband linear filters in the temporal domain improve the signal-to-noise ratios for motions, 

such as respiration and vibrations, that particularly occur in the narrow range of frequencies. These filters can 

also separate object motions [53] that correspond to various frequencies, such as pipe vibration, which 

vibrates at a certain set of modal frequencies. Each model frequency has a different vibration spatial pattern. 

Video magnification can amplify these motions that correspond to a range of temporal frequencies and reveal 

these spatial patterns. Figure 9 shows a single frame from each motion-magnified video with its theoretically 

expected shape [54].  

Objects in local image patches move consistently; otherwise, it is considered noise. Oversmoothing 

operations can reform white noise into reasonable motion signals. As a result, verification of these amplified 

signals is vital, and many experiments have been conducted to compare the visual motion signal with signal 
recorded by accurate devices. The results of these experiments verify the reality of  

these motions [19, 29, 55-56]. 
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Figure 9. Isolating different types of spatial motions with temporal filtering [57] 

 

 

5.4.   Amplifying the Colour 

The phase-based formulation removes low-amplitude, short motions, whereas larger amplitude 

motions remain to pass through. Motion attenuation is controlled by setting the amplification factor (α) to a 

negative value in the range of (−1, 0). If (α) has a value of −1, then all of the phase changes over time within 

the desired frequency band zeros-out. However, this result differs for every frame because coefficient 

amplitudes are changing over time. This condition is similar to other motion processing, such as the 

denoising presented in [58] and the video deanimation in [59]. However, these processing operations can be 

carried out efficiently when motions in the scene are small. 

The linear magnification method jointly amplifies motions and colour changes for a particular input 
video; therefore, small face motions can become larger and visible when amplifying colour changes 

corresponding to the pulse. This feature may be undesirable in the application. This method can remove these 

undesirable motions. A similar colour amplification can result in that of the linear method entirely with 

steerable pyramids. 

 

 

6. EXISTING WORKS USING PHASE-BASED EVM 

In [12], the researcher used Eulerian motion magnification (EMM) to determine the feelings of 

others, which are transverse and sudden, for a short period. Movement magnification can enhance the 

detection rate of hidden emotions for facial expressions, such as tense, disgust, happiness, surprise  

or repression.  
In [16], the researchers used EMM to detect vital signs for people who are alive. However, they 

either faint or are infected in dangerous environments and places that are difficult for rescuers to access, such 

as battlefields or terrorist acts, which represent finding survivors a challenge.  

In [17], the EVM technique was used to visualise the movement of microorganisms, such as 

bacteria, that are invisible to the human eye.  

In [18-19], a method was presented to measure displacement and vibration and identify typical 

characteristics for a particular structure to detect any damage. A camera was used as a sensor for monitoring, 

and the resulting video was analysed using EMM to magnify small movements; such vibrations and 

displacement in structures are evident for engineers. The results obtained from the camera were validated by 

comparing the results obtained from the camera with the results obtained by the devices used to measure 

vibration and displacement. The results extracted from the video were accurate.  

In [35], a new method of phase-based EVM was proposed. The authors presented an image pyramid 
decomposition that uses Riesz transform (R-T). The new Riesz pyramids of a video frame decompose an 

approximate R-T using two three-tap finite difference filters, and invertible octave bandwidth filters are 

applied. These authors claimed that their method can be utilised for real-time subtle motion visualisation. 

This method is considerably faster than complex steerable and maintains video quality. However, the Riesz 

pyramid fails to maintain the power to the input signal, which can cause side artefacts. 

In [38], a new method called EMMS was suggested to solve problems, such as increased processing 

time and noise and reduced video quality. The method is based on wavelet decomposition, Chebyshev 

bandpass filter and image denoising and can extract nondetectable motion information from input videos. 

This method has surpassed previous methods in terms of reducing processing time and eliminating noise. The 

method is also considerably faster than previous methods, has higher video quality and reduces noise. EEMS 

may also be passable for use in video-processing applications in real time. 
 

 

7. COMPARISONS 

In this section, we summarise the main differences amongst the magnification methods in Table 1. 

In Table 2, the differences in video quality are presented for different methods. Four source videos (baby1, 
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baby2, guitar and camera video) are used in this comparison. They are available on the MIT website through 

the webpage (http://people.csail.mit.edu/mrub/vidmag/). The quality is measured by computing peak signal-

to-noise ratio [60], mean squared error and the other quality metrics that are shown in the first column of 

Table 2. Table 3 shows the differences amongst the magnification methods in the processing time to the 

video sources. Table 3 shows the differences amongst the magnification methods in the execution time by 

using the same four source videos that are used in Table 2. All the execution time measurements are achieved 

on the basis of the same computer and MATLAB software version. In each test, 100 frames are taken from 

each video source. 
 

 

Table 1. Comparison of The EVM Methods 
Method Decomposition Magnification Overcompleteness Noise Exact for 

LVM [8] Laplacian pyramid 
Supports small 

magnification factor 

3

4
image Magnified Linear ramps 

Enhanced EVM 

[37] 
Laplacian pyramid 

Supports medium 

magnification factor 

≈ 15%–20% slower 

than LVM 

Minimised via 

postprocessing 
Linear ramps 

Phase-based 

method [29] 

Complex steerable 

pyramids 

Supports large 

magnification factor2 

with suboctave 

bandwidth filters 

2k/(1–2
−2

𝑛 )1 (3–4 times 

slower than LVM with 

octave bandwidth, 2 

orientations) 

Translated Sinusoid 

Fast phase-based 

method [35] 
Riesz pyramid 

Supports large 

magnification factor 

≈ 20%–80% faster than 

phase-based 

method(octave 

bandwidth,2 

orientations ) 

Translated Sinusoid 

EMMS [38] Wavelet pyramid 
Supports large 

magnification factor 

≈ 60%–70 % faster 

than LVM 
Removed Linear ramps 

 

 

Table 2. Comparison Amongst Eulerian Methods on Average Video Quality Metrics for Baby 1 Video, Baby 

2 Video, Guitar Video and Camera Video 

 

 

Table 3.Comparison of the Magnification Methods in Terms of Processing Time Measured by Seconds 

Input Videos 

Methods 

LVM 

[8] 

E2VM  

[37] 
Phase-based method [29] 

Fast phase-based  

method [35] 

EMMS 

[38] 

baby1  85.67 101.32 213.17 117.45 50.68 

baby2  82.52 97.84 211.74 115.73 48.54 

camera  100.76 120.05 243.18 130.24 59.29 

guitar  19.77 24.15 33.84 26.37 12.31 

 

 

8. CONCLUSIONS 

The EVM approach can be considered an efficient tool in the field of subtle variations in motion and 
colour of source videos. This tool represents a computer-based microscope that can be used in several 

applications in different fields, such as mechanical, material and civil engineering and biology and 

Video quality  

The Method 

LVM [8] 
Enhanced EVM 

[37] 

Phase-based method 

[29] 

Fast phase-based 

method [35] 

EMMS 

[38] 

Peak signal-to-noise ratio (PSNR) 29.3105 33.85575 26.746025 26.788 36.16575 

Mean squared error (MSE) 95.81475 29.617 175.03425 156.79375 19.63335 

Structural similarity (SSIM) 0.894125 0.96295 0.87055 0.88645 0.96895 

Multiscale structural similarity 

(MS-SSIM) 
0.916525 0.983875 0.9498 0.963825 0.992525 

Gradient similarity measure 

(GSM) 
0.98855 0.9967 0.991675 0.9928 0.99815 

Feature similarity (FSIM) 0.9167 0.986925 0.93245 0.940775 0.9911 

Spectral residual similarity 

(SRSIM) 
0.95085 0.993225 0.967125 0.97145 0.994725 

Noise quality measure (NQM) 17.92975 24.42125 20.68125 19.28175 29.80925 

Weighted signal-to-noise ratio 

(WSNR) 
26.87175 33.9785 29.8235 27.24025 40.238 

Visual signal-to-noise ratio 

(VSNR) 
19.3675 28.829 19.6445 21.27025 34.66275 

Visual information fidelity (VIF) 0.517775 0.673725 0.4149 0.482525 0.72445 
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healthcare. EVM has two main categories, linear and phase based. Each category has its own strengths and 

drawbacks. Linear-based EVM is simple and fast but fails to process large values of amplification factor 

because amplifying noise results in poor quality and unclear magnification. By contrast, phase based-EVM 

can amplify subtle motion by large amplification factor; however, it is an intensive algorithm. In conclusion, 

several challenges, such as real-time suitability, magnified noise reduction and significant and subtle motions 

in source videos, must be solved in EVM through scientific research.  
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