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 Coarseness is an effective description for texture analysis and many 

approaches capture this property of texture in different methods. In this 
research, we propose a new texture descriptor (CFS) that works based on 
coarseness and the fineness similarity score. For tuning of its configuration, 
we collect coarse and fine textures based on human visual perception at first. 
After that, we relabel the "coarse" and "fine" categories of the gathered 
textures during the configuration of the operator in a proposed framework. 
We concatenated the features of two pyramid representations with the CFS 
information of the original texture (PCFS). In addition, we combine  

the PCFS information with our last proposed feature selection approach to 
improve the efficiency of the CFS. We evaluated the proposed feature 
extraction method with classification of one of the well-known data set, 
Outex. Experimental results depict satisfactory performance of the CFS with 
very low-dimensional feature length. 
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1. INTRODUCTION  

Texture is not a new subject in image processing, but it plays an important role in low-level analysis 

and explanation of an image in the machine vision field. Texture analysis is important in a wide range  

of applications such as image classification and segmentation [1], image retrieval [2], surface inspection [3], 

remote sensing [4], object recognition [5], environment modelling [6], satellite or aerial imagery [7]  

and motion detection [8], fingerprint spoof detection [9] and the nude image identification [10]. Regarding  

to different texture analysis categories [11], statistical methods are the most popular texture analysis 

categories. Statistical methods consider the distribution of gray values by computation of local features  

in the image and extract a set of statistics from the distributions of the local features. Depending  

on the number of pixels that define the local feature statistical methods, statistical methods can be classified 
into first-order, two-order, three-order statistics and more [12]. Textures are classified into two classes, 

namely, touch and visual. Touch textures relate to the touchable feel of a surface and range  

from the smoothest (little difference between high and low points) to the roughest (large difference between 

high and low points). Visual textures relate to the human image observation [13]. 

Coarseness and fineness are one of the most popular properties of the texture [14]. Some traditional 

methods for surveys have been introduced by Haralick [15], Chellappa et al. [16], Tuceryan and Jain [11], 

Tamura et al. [17], and Ojala et al. [18]. Our contribution in this paper is to focus on the coarseness  

and fineness scores of texture and using them as a texture descriptor. The proposed descriptor has very low 

feature dimensionality and will reduce the complexity of classifiers and improve performance.  

This descriptor uses Haralick's features and some statistical methods like standard deviation and skew.  

We use Outex [19] data sets to generalize and evaluate our results. The rest of this paper is organized  
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as follows. Section 2 describes related works on textural features extraction methods. Section 3 describes 

proposed approach. Section 4 presents the experimental results and Section 5 concludes the paper. 

 

 

2. RELATED WORKS 

One of the most widely used statistical methods is co-occurrence features, which has inspired  

a variety of modifications later on. Haralick et al. [20] have defined the co-occurrence matrix as a second 

order histogram statistics and it is one of the most popular statistical features for texture analysis.  
The extraction of the Haralick features is divided into two parts. First, is the calculation of gray level  

co-occurrence matrix (GLCM) and the second is the extraction of features from the GLCM. The GLCM 

matrix defines the probability of joining two pixels Pd,θ(i, j) that have values i and j with distance d and 𝜃  

as an orientation angular. Each element of the GLCM is the number of occurrences of the pair of pixels  

with value i and j which is at distance d [21-23]. In other words, the GLCM is a square matrix with Ng 

dimension, where Ng is the number of gray levels in the image. More details about the calculation of GLCM 

are in [15, 20, 24]. Tamura et al. [17], considered visual perception of texture features includes coarseness, 

contrast, directionality, line-likeness, regularity, and roughness to describe various texture properties. Tamura 

properties are very meaningful in context to texture feature extraction. Some research on content-based 

image retrieval (CBIR) depicts that the Tamura's features have better performance than other methods  

[25, 26]. In addition, some researches compare performance of different coarseness features in different 

challenges like noise, illumination, and scale. In recent researches, pyramid representation has been used  

for achieving an effective local binary patterns descriptor [27, 28], improving the scene categorization  
[29, 30] and image classifying by the object categories they contain [31]. We use this approach to improve the 

power of our proposed texture descriptor. In this research, we implemented the proposed feature extraction 

operators on two pyramid representations and concatenated them with the original texture as a new feature vector.  

 

 

3. PROPOSED APPROACH 
In this section, we propose a framework to find the coarse and soft textures. After that, a method  

to find the coarseness score (CNS) and fineness score (FNS) for a texture will be proposed. Finally,  

we use these features for texture classification in normal, pyramid, and combination with a feature  

selection approach. 

 

3.1.  Method of collecting coarse and fine textures 

First, we collected 163 coarse and 81 fine textures from the internet that has been labelled coarse 

and fine. The textures are in different illumination and scale (form 128×128 to 3072×2300) based on human 

visual perception. After that, we split the textures to a non-overlapped area with resolution 128×128.  

As we know, fine textures have a less standard deviation (σ) than coarse textures. For finding the pure coarse 

and fine texture, we pre-label the gathered textures based on their σ. After splitting and pre-labelling  

of the textures, the number of coarse and fine texture was 1892 and 1974, respectively. We organized Texta1, 

Texta2, Texta3, and Texta4 data sets with 500, 500, 409, 2457 none-overlapped textures with about 50% 

coarse, and 50% fine textures. Some samples of coarse and fine textures have been shown in Figure 1. 

 

 

    
C#1 C#2 C#3 C#4 

    
F#1 F#2 F#3 F#4 

 

Figure 1. Some samples of coarse and fine textures, coarse and fine textures' labels started by  

C# and F#, respectively 
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3.2.  Voting fusing method [32] 

For unsupervised detection of coarse and fine texture, we implement the majority voting fusion  

that was used for the verification scenario [32]. For this purpose, we used four statistical features (Sigma), 

shown by (1), and thirteen Haralick’s features (HF) with three similarity measures, Czekannowski (Cze) [33], 

Chi-2 [34], and Euclidian distances (ED). Table 1 introduces the feature extraction method and similarity 

measures of the considered classifiers. As the ROC diagrams on Figure 2 shows, the classifiers have different 

verification performances under different similarity measures. For example, the Cze has the best performance 

with HF while, this measure with Sigma has the worst efficiency. Hence, we consider all three measures for 

verification. 

 
Sigma = <mean(I), std(I), skewness(I), turkitue(I)> (1) 

 

 

  
(a) (b) 

 

Figure 2. ROC diagrams calculated on texta1 (as a probe data) and texta2 (as a gallery data) under HF  

and sigma feature extraction methods. 

 
 

As we can see, the diagrams depict different performances of the measures. (a) ROC diagram  

under Haralick features and three measures. (b) ROC diagram under Statistical features and three measures. 

 

 

Table 1. Classifiers specifications 

Classifier name Feature extraction method Similarity measure 

C#1 Sigma Cze 

C#2 Sigma Chi2 

C#3 Sigma ED 

C#4 Haralick Cze 

C#5 Haralick Chi2 

C#6 Haralick ED 

 

 

For determining the similarity thresholds for all six classifiers, we considered Texta1 and galley2 

data sets for a fixed false acceptance rate (FAR). For each pair of images in the data set, the matching score 

is determined. Coarse data considered as an imposter and fine data were labeled as genuine.  

If we plot the fraction of imposter scores larger than the threshold (that is the FAR) as a function  

of the threshold, we can determine the required similarity threshold for a certain required FAR. To determine 

the fused decision for the comparison of a probe to a reference image, the scores Si for the classifier  

are compared to the similarity threshold of the classifiers (Thri) and the decisions are accumulated by (2). 

 

𝑉 = ∑ 1 if 𝑆𝑖 > 𝑇ℎ𝑟𝑖
0 otherwise

𝐴𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠
𝑖  (2) 

 

The number of votes is then regarded as a new score and is compared to decision threshold VT, 

shown by (3), to reach a decision: 
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𝐷 = {
1 if  𝑉𝑖  > 𝑉𝑇

0 Otherwise
 (3) 

 

The decision threshold (VT) must be determined using a second data set (Texta3) and again is tuned 

for a specific FAR. We call the FAR that is used to obtain the first set of similarity thresholds (Thri)  

the projected FAR (pFAR). The optimal setting for pFAR can be different from the FAR required  
for the fused classifier. Optimum pFAR is obtained by minimum EER. Figure 3 Depicts a block diagram  

of finding the Thri. 

 

 

 
 

Figure 3. Diagram of finding Thri thresholds on pFAR 

 

 

3.3.  Coarseness and fineness similarity score 

In this subsection, we propose a method to find the coarseness and fineness similarity score  

of a texture. We have four data sets (Texta1 and Texta2, Texta3 and, Texta4) with textures that have been 

labelled coarse and fine. We consider a similarity score of textures to coarse (CNS) and fine textures (FNS) 

of each data set under verification scenario [32]. The CFS feature will have dimension eight shown by (4). 

 
CFS = < CNS1 , CNS2 , CNS3 , CNS4 , FNS1 , FNS2 , FNS3 , FNS4 > (4) 

 

Where, CNSk and FNSk means CNS and FNS features were obtained from kth data set. 

 

3.4.  Textures relabeling using CFS 

As we know, the similarity thresholds (Thri) and VT have been obtained based on the textures 

in the gallery and probe data sets that labelled coarse and fine by human visual perception. Therefore, 

machine-based label of the textures may be different with their current label [17]. Two-dimensional plotting 

of the CFS features, shown in Figure 4(a), proves this idea. As we can see, the FNS value of some coarse 

textures is higher than their CNS. In addition, the CNS value of some fine textures are higher than their FNS. 

Note that to the 2-D plot of the CFS, we calculate the average of CNSk and FNSk values, shown by (5),  

for all k data sets (k=4).  
 

2𝐷 − 𝐶𝐹𝑆 = < 𝐶𝑁𝑆̅̅ ̅̅ ̅̅ , 𝐹𝑁𝑆̅̅ ̅̅ ̅̅ >=<  
𝐶𝑁𝑆1+𝐶𝑁𝑆2+𝐶𝑁𝑆3+𝐶𝑁𝑆4

4
 ,

𝐹𝑁𝑆1+𝐹𝑁𝑆2+𝐹𝑁𝑆3+𝐹𝑁𝑆4

4
 > (5) 

 
To find the machine-based coarse and fine textures in the data sets, we relabel the textures  

based on their CNS and FNS values. After relabeling, we recalculate the Thri and VT parameters  

and the CFS of the textures in the data sets. We repeat this process until there is not any coarse (fine) texture 

that its CNS (FNS) value is less than its FNS (CNS). Figure 4(b) depicts 2-dimensional diagram of the CFS 

for Texta4 data set after 10 times relabeling. Iterative algorithm to find true coarse and fine textures  

is in the following:  

Coarse 
Text.

Fine 
Text.

Gallery 1 
(x500)

Gallery 2 
(x500)

Score Matrix
(SM)

ROC

FPR

TPR

Thr(Classifiers, pFAR#n)

Thr(Classifiers, pFAR#1)

pFAR

Coarse Text.                                    Fine Text.

pFAR#npFAR#1
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a) k=1. 

b) Consider the kth version of the data sets (Texta1(k) , Texta2(k), Texta3(k), and Texta4(k)). 

c) Calculate Similarity thresholds of classifiers under different pFAR on Texta1(k) and Texta2(k)  

as a gallery and probe, respectively. 

d) Calculate decision thresholds on Texta3(k). 

e) Calculate optimum pFAR(k), pFAR(k)opt, based on minimum EER at kth repeatation. 

f) Obtain system configuration; VT and individual similarity thresholds based on pFAR(k)opt. 

g) Analysis coarseness and softness of kth version of all data sets. And make new new version  

of the data sets (k=k+1). 

h) If there is no change in the textures of data sets, go to step 10. 
i) Go to step 2 

j) Find the final VT and individual similarity thresholds (Thri) 

 

 

 
 

(a) 

 
(b) 

 

Figure 4. Two-dimensional plot of the CFS on Texta4. The vertical and horizontal axises are 𝐶𝑁𝑆̅̅ ̅̅ ̅̅  and 𝐹𝑁𝑆̅̅ ̅̅ ̅̅  

values of 2D- CFS, respectively. (a) before refining. (b) After 10 times refining 
 

 

Figure 5(a) depicts similarity threshold values of six classifiers (Thri) under iteration 6 on pFAR 

(1% to 20%). Optimum pFAR is obtained on the Texta3 in the minimum value of EER. Figure 5(b) depicts 

diagram of EER on pFAR. Under minimum EER, the optimum pFAR is obtained 0.034 (or 3.4%).  

The similarity threshold values for six classifiers under optimum pFAR have been shown in the Table 2.  

Note that to change distance criterion to similarity, we multiply the distance values, calculated by distance 

measures, by -1. Figure 6 depicts verification parameters such as false acceptance rate (FAR), false rejection 

rate (FRR), true positive rate (TPR), and EER under tuned Thri on Texta4. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 19, No. 1, July 2020 :  553 - 562 

558 

 

  
(a) (b) 

 

Figure 5. Diagram of the similarity thresholds of six classifiers (shown by labels Ap#1 to Ap#6) and EER  

on pFAR=0.1% to 20%. The values obtained on the Texta3. (a) Similarity thresholds values (Thri) on pFAR. 

(b) EER on pFAR 

 

 

Verification parameters, false acceptance rate (FAR), false rejection rate (FRR), true positive rate 

(TPR), and EER under tuned Thri on Texta4 as shown in Figure 6. 

 

 

Table 2.The similarity threshold values for six classifiers under optimum pFAR (pFARopt = 0.034) 

 C#1 C#2 C#3 C#4 C#5 C#6 

Thr -0.63 -0.026 -0.085 -3.977 -0.086 -0.152 

 

 

 
 

Figure 6. Verification parameters, false acceptance rate (FAR), false rejection rate (FRR), true positive rate 

(TPR), and EER under tuned Thri on Texta4 

 

 

For calculation of CFS in pyramid representation, we repeat the calculation of recognition 

parameters such as Thri and VT for textures with resolution 64×64 and 32×32. In pyramid approach,  

we concatenated the CFS features of two representations with the original texture. Table 3 manifests  
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the similarity threshold values of classifiers under optimum pFAR. It can be seen that the threshold values 

have not huge change in different representations. However, the optimum FAR increased up to 3.8%.  

 

 

Table 3. Similarity threshold values of classifiers under optimum pFAR on 64×64 and 32×32 textures 

 @FARopt C#1 C#2 C#3 C#4 C#5 C#6 

64×64 0.038 -0.67 -0.025 -0.078 -4.03 -0.10 -0.17 

32×32 0.038 -0.68 -0.022 -0.073 -3.66 -0.10 -0.18 

 

 

4. EXPERIMENTAL RESULTS 

4.1.   Data set 

The Outex data set is one of the well-known benchmark for texture classification algorithms.  

Our experiments on the Outex are tested on Tl84 test suite. It contains 24 categories of textures with nine 

different rotation angles (0˚, 5˚, 10˚, 15˚, 30˚, 45˚, 60˚, 75˚, and 90˚). There are 20 non-overlapping 128×128 

texture samples for each category. In this research, we consider this data set for implementation  

of our proposed feature extraction operator. 

 

4.2.   Distance measure 

In the classification phase, non-supervised techniques are used. Since these types of classifiers  

can handle a large number of categories, they avoid parameter over-fitting, and need no learning and training. 

In this experiment, we classify the samples using the Chi-2 (𝜒2) distance, the Euclidean distance (𝐸𝐷),  
and the Czekannowski distance (Cze), which are calculated as follows: 

 

𝜒2(𝑆, 𝑀) = ∑
(𝑆𝑏−𝑀𝑏)2

𝑆𝑏+𝑀𝑏

𝐵
𝑏=1  (6) 

 

𝐸𝐷(𝑆, 𝑀) = √∑ (𝑆𝑏 − 𝑀𝑏)2𝐵
𝑏=1  (7) 

 

𝐶𝑧𝑒(𝑆, 𝑀) = ∑
‖𝑆𝑏−𝑀𝑏‖

𝑆𝑏+𝑀𝑏

𝐵
𝑏=1  (8) 

 

Where B denotes the number of histogram bins. In addition, S and M are histograms of sample  

and model, respectively.  

 

4.3.   Texture classification with CFS descriptor 

Figure 7 Depicts 2D-CFS values of Outex images in a normal and pyramid approaches. It can be 

seen that the proposed feature extraction can separate the textures of 24 categories in a good order. As we can 

see, the textures property of the this data set is close to coarse. While, after downsampling using Gaussian 

filter, the textures property goes to fine textures. Table 4 depicts the classification results of the Outex with 
normal and pyramid representation (PCFS). Although pyramid representation makes better results  

(upto 37%), but it has lower performance in comparison with state-of-the-arts texture descriptors, shown in 

Table 5. Thus, we combine features of PCFS with one of our latest feature selection approach, ML+MR [28], 

to obtain acceptable accuracy. Of course, the proposed approach has considerable low feature dimension 

against other operators. Table 5 depicts comparing of the best classification scores and feature length 

achieved using the proposed approach with the various state-of-the-art methods on the Outex-Tl84 data set.  

It can be seen that with consideration of both accuracy and feature length, the proposed texture descriptor has 

a better performance than other approaches. 

 

 

Table 4. Outex-tl84 classification under CFS operator 
Operator Cze Chi2 ED Feature length 

CFS 66.67 64.92 64.71 8 

PCFSa 87.67 87.63 88.58 24 

CFS+MLMRb 98.79 98.38 98.33 136 (24+112) 

a) a CFS under two Gaussian pyramid representations. 

b) b MLMR is the ML+MR feature selection approach proposed by Akoushideh et al. [28] 
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(a) (b) 

 

Figure 7. Diagram of two-dimensional CFS (2D-CFS) for the textures of Outex-Tl84. The vertical  

and horizontal axises are 𝐶𝑁𝑆̅̅ ̅̅ ̅̅  and 𝐹𝑁𝑆̅̅ ̅̅ ̅̅ , respectively. Each category was depicted in different colour.  
(a) 2D-CFS values on normal textures. (b) 2D-CFS values in pyramid representation (level one),  

down-sampled by Gaussian filter 

 

 

Table 5. The comparing of the best classification scores and feature length achieved by the CFS with various 

state-of-the-art feature extraction operator for texture classification on the Outex-Tl84 data set 

Operators Feature length Accuracy Similarity measure 

LBP and LBP/VAR [35] 54 90.20% Chi-2 

NI/RD/CI-LBP [36] 1100 98.70% Chi-2 

VZ-MR8 [37, 38] 2440 92.50% Chi-2 

VZ-Joint [39] 610 92.00% Chi-2 

CLBP [40, 41] 2200 95.40% Chi-2 

𝑀𝑃𝐿𝐵𝑃𝑟𝑢𝑖  [27] 30 88.96% Chi-2 

BRINT2_CS_CM [42] 1296 99.35% NNC+Chi-2 

LBPNT [42] 444 99.24% NNC+Chi-2 

NRLBP [42] 90 93.44% NNC+Chi-2 

ML+MR [28] 140 94.71% Chi-2 

ML+MR+MB [28] 224 97.88% Cze 

CFS 8 66.67% Cze 

PCFS 24 88.58% ED 

CFS+MLMR 136 98.79% Cze 

 

 

5. CONCLUSION 

The experimental results show using proposed texture descriptor (CFS), we can receive  

to acceptable classification accuracy, with very low feature dimensionality vector. Further, with pyramid 

approach (PCFS) we can improve the performance of this operator up to 37% on the Outex. In addition,  

the combination of the PCFS with ML+MR makes considerable classification accuracy with very low feature 

length. For future work, we can consider new coarse and fine data sets to assess the performance of the CFS 

descriptor on different data. In addition, we can fuse features of the CFS with other state-of-the-art 

descriptors to improve classification accuracy. Furthermore, we can use the coarseness feature extractors, 

which have been proposed in the literatures, instead of (or with) considered features to improve the texture 

classification accuracy. 
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