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Abstract 
To deliver a Mars entry vehicle to the prescribed parachute deployment point, active entry 

guidance is essential. This paper addresses the problem of Mars atmospheric entry guidance through drag 
tracking method with extended high gain observer. First, an extended high gain observer combined with 
feedback linearization is applied in drag tracking for Mars entry longitudinal guidance.  The observer 
estimates the drag and drag rate for drag tracking, estimates the perturbation due to model uncertainty and 
disturbance, and compensate for the perturbation by canceling its estimate. Then, bank reversal is 
adopted in the lateral plane to reduce the cross-range error. Finally, Mars entry simulation is performed to 
assess the performance of the adaptive guidance law. The results demonstrate that the proposed 
guidance law exhibits good performance. 
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1. Introduction 

In recent years, the concept of pinpoint landing has been proposed for Mars landing 
exploration missions to satisfy the scientific objectives and reduce risks of mission failure. 
Pinpoint landing requires the three-sigma position dispersion at the end of parachute 
deployment below approximately 3km, which is a large improvement upon former landing 
position uncertainties on the order of several hundred kilometers [1]. As demonstrated by Wolf  
[2]，the most efficient way to increase the landing accuracy is achieved during the atmospheric 
entry by guiding and controlling the vehicle trajectory in order to eliminate the dispersions 
caused at entry and accumulated during the hypersonic phase. 

Many scholars have paid a lot of attention to Mars entry guidance [3-10]. And drag-
based guidance methods have proven to be very effective in the Apollo and Shuttle programs 
[11,12], and were applied to Mars entry guidance research by many scholars [3-6]. Drag-based 
entry guidance strategy offers distinct advantages. On the one hand, various in-flight and 
terminal constraints imposed on the vehicle can be represented as drag constraints. On the 
other hand, Drag can be determined accurately from accelerometer measurements and the 
downrange to be flown by the vehicle can be determined exactly by the drag profile. So, the 
drag tracking approach can achieve the guidance requirements with robustness to modeling 
errors in atmospheric density and vehicle aerodynamics, which are main error sources [7, 8].  

Feedback linearization (FL) used in ref. [4-6] to track drag can cancel nonlinearities and 
achieves asymptotic tracking under the idea conditions of no model uncertainty and 
disturbance. However the model uncertainty and disturbance exist in practice, which can 
introduce errors into FL control. And the FL control applied in Mars entry needs drag and drag 
rate information. While drag is determined directly, the drag rate needs to be computed either 
numerical differentiation or a model-based analytic expression, which also introduces errors into 
FL control. To recover the ideal performance of the FL control in presence of uncertainties and 
disturbance, this paper uses extended high-gain observer (EHGO) [13-15] to estimate drag rate 
and combined modeling error due to model uncertainty and disturbance which enables error 
compensation. The structure of this paper is as follows: Section 2 introduces the Mars entry 
equations used in this paper. Section 3 describes the new drag-based tracking longitudinal 
guidance method with extended high-gain observer. The bank reversal for lateral control is 
introduced in Section 4. In Section 5, simulation is performed and results are discussed. Finally, 
Section 6 gives the conclusion. 
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2. Three Degrees of Freedom Dynamic Equations 
The Mars lander is modeled as an unpowered point mass flying in a stationary 

atmosphere of a nonrotating and spherical planet. The three degrees of freedom dynamic 
equations are  

 
sinr V                                                                                                            (1) 

 
sinV D g                                                                                                    (2) 

 
 cos / / / cosL V V r g V                                                                            (3) 

 

cos sin cosV r                                                                                      (4) 

 

cos cosV r                                                                                                       (5) 

 
= sin cos tan sin cosV r L V                                                                          (6) 

 
Where r is the distance from the center of the Mars to the mass center of the entry vehicle, V is 
the velocity of the entry vehicle,  is the flight path angle,   is the longitude,  is the latitude, 
is the heading angle defined as a clockwise rotation angle starting at due north,  is the bank 
angle defined as the angle about the velocity vector from the local vertical plane to the lift 
vector. An inverse square gravitational acceleration 2g r , where mars=GM is assumed. L and

D are the aerodynamic lift and drag accelerations, defined by 
 

2 2DD V SC m , 2 2LL V SC m                                                                           (7) 

 
Where DC and LC are the aerodynamic drag and lift coefficients respectively, which are assumed 

to be constant, S is the vehicle reference surface area, m is the mass of the entry vehicle.  is 

the Mars atmospheric density, defined by the universal exponential density model 
 

 expr r sr r h                                                                                                   (8) 

 
Where r is the density at the reference distance rr , sh is the constant scale height. 

 
 

 
 
 

Figure 1. Effects of Selecting Different Switching Under Dynamic Condition 
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The vehicle’s flight path is modified by rotating the lift vector around the axis formed by 
the velocity vector. The angle the lift vector is rotated is the bank angle,  . Figure 1 shows the 
components of lift in the longitudinal and lateral planes. It is easy to see that a change of the 
sign of  only affects the lateral motion, since    sin sin     but    cos cos   . This 

allows for the decoupling of the longitudinal dynamics and lateral dynamics provided that the 
Coriolis accelerations are small and the bank reversal  is  performed  fast  enough. So the 
longitudinal guidance can be solved changing the magnitude of  , and the lateral guidance can 
be solved using bank reversals, which is a change of the sign of  via a fast rotation of the lift 
vector. 

 
 

3. Longitudinal Guidance Design 
Firstly, defined the rang to go as the distance along the flight path to the target point, 

and is given by a drag-energy profile. The specific energy is defined as 
 

 2
ars2 ME V R R                                                                                            (9) 

 
Differentiating E  with respect to time yields 
 

dE dt VD                                                                                                            (10) 

 
Then the predicted rang to go pr is given by 

 

= =
c f

f c

V E

p V E
r Vdt dE D                                                                                                 (11) 

 
Where cV and fV  are the current velocity, cE and fE are the current and terminal specific 

energies. Equation 11 implies that flying a specified drag-energy profile gives a specified down-
range distance. 

In longitudinal entry guidance, D is considered as the output of the longitudinal dynamic 
and cos as control input. We need to command the bank angle magnitude to track the 
reference drag. In order to construct the mathematical relationship between the output D and 
control input cos , the drag needs to be twice Lie differentiated, because it has relative degree 
two. The result is as follows 

 

   , , , , , , ,D b V r D D a V D D u                                                                              (12) 

 
Where 
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  2, , , cos (2 1 )sa V D D DL g V h     
 
Where control input cosu � , and  = sin 2 sinsD DV h D V D g      

The longitudinal guidance law is to command the control input cosu �  to track the 
reference drag profile and achieve the desired rang to go tr  at the same time during entry 

phase. It includes drag profile initialization, drag profile updating and drag tracking. 
 

3.1. Drag Profile Initialization 
The initial drag profile is programmed beforehand considering various in-flight and 

terminal constraints imposed on the vehicle. Then it is approximated by a thN -order polynomial. 
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Where iC  are polynomial fitting coefficients, E  in Equation 13 is calculated by 

estimated velocity and altitude, which in turn provides the reference drag value rD . 6N   is 

considered to be suitable [4]. 
 

3.2. Drag Profile Updating 
The reference drag profile is periodically updated to null the error between the predicted 

rang to go by 
 

 up1
f

c

E

p rE
r D E dE                                                                                                  (14) 

 
And the estimated distance to the target. Where      up 1 ( )r rD E f E D E  , The 

constant  is determined iteratively to null the range error. The shaping function  f E is given 

by 
 

     2
2 1 2 0.5f E E                                                                                   (15) 

 

Where      = c f cE E E E E   . 

Then  up
rD E  is fit using the least squares approach according to the Equation 13, and 

replaces  rD E  in the drag reference generation for the next part of the trajectory. 

 
3.3. Drag Tracking 

Let re D D  , then re D D   and re D D   . Using Equation 12, we obtain the drag 

error equation 
 

re b au D                                                                                                             (16) 

 
Converting Equation 16 into the normal form [13] yields 
 

 rb au D    x Ax B                                                                                           (17) 

 
y  Cx                                                                                                                     (18) 

Where  Te e x , the output ry e D D  
0 1

0 0

 
  
 

A ,  T0 1B ,  1 0C . 

The goal is to design an output feedback controller to asymptotically regulate the output 
y  to zero, for all initial states in the compact set of interest, while meeting certain requirements 

on the transient response. If there are no uncertainties, no disturbance and no estimate errors, 
a and b in Equation 17 can be exactly known. Then FL which is often used in a lot of literature 
[4-6] can be used to cancels the nonlinear terms a and b of the drag dynamics and achieve 
exponential tracking. The FL tracking law is given by 

 

 ru b D a    Kx                                                                                                (19) 

 
Where,  1 2k kK is chosen using a linear control design method to make  A BK  Hurwitz 

which means the origin of the closed-loop system is exponentially stable, and shape the 
transient response. 
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In practice, the external disturbance and uncertainties in atmospheric conditions and 
vehicle aerodynamics really exist and cannot be ignored. Moreover, navigation errors cannot be 
avoided and should be considered. In this case, the actual values of a  and b  are unknown, 

and it is only possible to calculate estimate values â and b̂ , which greatly degrades the 
performance of tracking law shown in Equation 19. So, extended high-gain observer (EHGO) is 
proposed to solve this problem. EHGO can estimate the combined modeling error and recover 
the ideal performance of the FL tracking in Equation 19 [14,15].  

Defining the perturbation  ˆ ˆb b a a u     , the EHGO is given by 

 
ˆˆˆ ˆ ˆ ˆ[ ] ( )( )rx x b au D y x        A B H C                                                                 (20) 

 

 1
1

ˆ ˆ= ( )n
n y Cx   
 

                                                                                             (21) 

 

Where
T 2 2

1( ) ,..., n
nH a b        , 1 1, , ,n n     are chosen such that the polynomial 

1
1 1...n n

ns s 
    is Hurwitz, and 0  is a small parameter. The control law is taken as 

 

   ˆ ˆ ˆ ˆˆ ˆru b D a      
x Kx x                                                                              (22) 

 
Where K is chosen to make  A BK  Hurwitz like Equation 19. However the transient 

response of the high-gain observer suffers from the peaking phenomenon. In addition to 
inducing unacceptable transient response, the peaking phenomenon could destabilize the 
closed-loop nonlinear system [14]. Fortunately, we can overcome the peaking phenomenon by 
saturating the control outside a compact region of interest to create a buffer that protects the 
states from peaking. Then the final output feedback controller is 
 

    ˆ ˆ ˆ ˆˆ ˆsat ru b D a      
x Kx x                                                                       (23) 

 
Theorems 1 and 2 in [14] has concluded that the EHGO tracking system making up of 

Equation 20, Equation 21 and Equation 23 can recover the stability and transient performance 
of the nominal closed-loop system under feedback linearization. Performance recovery is 
achieved in the sense that the difference between the trajectory of the actual and nominal 
system can be made arbitrarily small by choosing the high gain observer parameter sufficiently 
small. Moreover, the EHGO can offer the estimation of D  for drag tracking. 

 
 

4. Lateral Guidance Design 
Equation 6 represents the lateral dynamic. The lateral guidance is to switch the sign of 

 to control the lateral motion and reduce cross-range error. A change of the sign of   makes 
the vehicle turn to the opposite bank angle but leaves the longitudinal dynamics mostly 
unchanged. The swiching logic for commanding the sign of  is based on a heading error 
corridor. The heading error is defined as the angle error between the local horizontal projection 
of the current azimuth and a line to the target. The maximum heading error is defined as a 
function of the range to the target tr . The heading error corridor adopted here is shown in Figure 

2. Once the heading error exceeds the specified tolerance, swiching the sign of   is performed. 
It is should be noticed that bank reversal manoeuvres are not instantaneous in practice. An 
error in the propagation of the longitudinal trajectory with respect to the actual trajectory may be 
induced during the time interval required to perform a bank reversal. However, the lateral 
guidance is not the focus of this paper, and changing the sign of  is considered to be fast 
enough in this paper. So, the error induced by bank reversal can be ignored. 
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Figure 2. Heading Angle Error Corridor 
 
 

5. Results and Analysis 
In order to assessing the performance of the entry guidance method proposed in this 

paper, computer simulation and analysis in the MATLAB/Simulink environment has been carried 
out. The configuration and physical parameters of Mars Science Laboratory vehicle (MSL) [1] 
are used as an example to perform simulation and analysis in this paper. Vehicle mass m
=2804kg, reference area S =15.9m2, lift-to-drag ratio L D =0.24, ballistic coefficient Dm C S 
=120kg/m2, Mars radius MarsR =3397.2km, gravitational constant  =42828.376212km2/s3, 

reference density r =0.00078kg/m3, reference distance 0r =31.8km, scale height sh =10km. The 

observer parameter 1 =6, 2 =11, 3 =6,  =0.1, and control parameter  1 2k kK =[0.4 0.04]. 

The system uncertainties considerd in this paper are separated into three parts: initial 
states uncertainties, aerodynamic uncertainties and atmospheric uncertainties, which are main 
error sources in Mars entry. The initial entry conditions and corresponding uncertainties are 
shown in Tabel 1. The uncertainties of vehicle aerodynamic and Mars atmospheric density are 
represented through changing the lift-to-drag ratio L D and the reference density r , also shown 

in Tabel 1.  
 

Table 1. Initial State Values and Uncertainties of Vehicle 
Parameter Mean value Variation(3 ) Type of uncertainty 

Initial radial distance 0r (km) 3457.2 1 Gaussian 

Initial vehicle velocity 0V (m/s) 5700 20 Gaussian 

Initial flight path angle 0 (deg) -14 0.1 Gaussian 

Initial longitude 0 (deg) 0 0.05 Gaussian 

Initial latitude 0 (deg) 0 0.05 Gaussian 

Initial azimuth angle 0 (deg) 0 0.1 Gaussian 

Lift-to-drag ratio L D  0.24 0.024 Gaussian 

Ballistic coefficient  (kg/m2) 120 12 Gaussian 

Atmospheric density r (kg/m3) 0.00078 0.000117 Gaussian 

 
 
5.1. Performance of EHGO 

Firstly, the performance of the EHGO in estimating drag and drag rate is assessed in 
the present of various uncertainties. For the sake of simplicity, only longitudinal guidance is 
considered in this part. Figure 3 shows the drag and drag rate estimations of EHGO. The 
estimate curve and actual curve of drag are obviously different before 0.6s, but they are almost 
coincident after 0.6s. The estimate curve of drag rate behaves the same as the drag estimate. 
This indicates EHGO can accurately and enough fast estimate the drag and drag rate. Figure 4 
shows the performance of EHGO+FL control. It can be found that the refence drag can be 
asymptotically tracked, and the final error approaches zero, which demonstrates that the 
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EHGO+FL tracking system can recover the ideal performance of the FL control in presence of 
uncertainties and disturbance. 

 
 

   
(a) (b) 

Figure 3. Drag and Drag Rate Estimates of EHGO  (a)  Drag and its Estimate (b) Drag Rate and 
its Estimate 

 
 

 
 (a)                                                                      (b) 

Figure 4. Performance of EHGO+FL Control (a) Reference and Controlled Drag (b) Tracking 

Error 

 
5.2. Monte-Carlo Simulation of Mars Entry Guidance 

Monte-Carlo analysis is a numerical technique often used to study systems with many 
coupled degrees of freedom that have significant uncertainty in their inputs and behavior. The 
technique utilizes known probability distributions of system inputs and parameters to generate 
probability distributions of the system output. To get a more accurate estimate of the response 
of a system, a large number of simulations with different combinations of these dispersed 
parameters must be conducted to determine the output of the system under various possible 
real world conditions. In order to further test the performance of EHGO+FL guidance method, a 
2000-run Monte-Carlo simulation for both the EHGO+FL guidance and FL guidance with various 
uncertainties shown in Table 1 is carried out. Figure 5 shows the target miss distance dispersion 
of EHGO+FL guidance. The maximum longitudinal error and latitudinal error corresponding to 
the worst case  are less than 8.6km, which can meet the requirement of future Mars pin-point 
landing exploration. Figure 6 shows the the target miss distance dispersion of FL guidance with 
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the same uncertainties. It can be found that the maximum error reaches 18km and is more the 
EHGO+FL control error. 
 

 
 

Figure 5. Target Miss Distance Dispersion of EHGO+FL Guidance 
 

 

 
 

Figure 6. Target Miss Distance Dispersion of FL Guidance 
 
 
6. Conclusion 

To meet the requirement of future Mars exploration, a new drag-based entry guidance 
method for low lift-to-drag ratio vehicle was present in this paper. An extended high gain 
observer combined with feedback linearization was applied in drag tracking for Mars entry 
longitudinal guidance. The FL tracking law and the EHGO+FL tracking law were compared in 
Mars entry simulations in present of various uncertainties. The results demonstrate that the 
observer can accurately and enough fast estimate the drag and drag rate. The 2000-run Monte-
Carlo simulations show the maximum error corresponding to the worst case for EHGO+FL 
guidance method is less than 8.6km and is more less than the error for FL guidance method. 
This validates the robustness and feasibility of the guidance algorithm developed in this article. 
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