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Abstract 
The Tsumego problem in Go was a basic and essential problem to be overcome in implementing 

a computer Go program. This paper proposed a reality of Monte-Carlo tree search in Tsumego of 
computer Go which using Monte-Carlo evaluation as an alternative for a positional evaluation function. The 
advantage of this technique was that it requires few domain knowledge or expert input. 

  
Keywords: Tsumego, Monte-Carlo tree search, the law of large numbers, computer Go 
  

    Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved. 
 
 
1. Introduction 

Tsumego problems have been found in Chinese books dating back to around the 13th 
century. They are presumably composed and collected from actual games much earlier. They 
range from situations that occur quite commonly, which every strong player ought to be familiar 
with, to deliberately difficult puzzles. Some books of the latter type are still used for professional 
training. 

Several conventions are used in the problems. The objective is to kill a group or prevent 
it from being killed. Problems do not specify how many plays are in the solution (as would be 
usual in a chess problem), because the goal of the problem is rarely to capture stones; as soon 
as the correct first move is played, the threatened group can be considered alive (or dead). 
Solution diagrams will either show the most tenacious resistance that the opponent can offer, or 
lines that require interesting or tricky tactics. If only part of the board is shown, as is usually the 
case, the rest of the board can be assumed to be empty. The modern convention is that well 
composed problems do not allow the threatened group to escape into empty areas of the board 
(this is one way in which such problems differ from real games), although escape and recapture 
was a theme in classical problems. 

The Monte Carlo method is a technique for analyzing phenomena by means of 
computer algorithms that employ, in an essential way, the generation of random numbers. The 
Monte Carlo method was given its name by Stanislaw Ulam and John von Neumann, who 
invented the method to solve neutron diffusion problems at Los Alamos in the mid1940s. 

Monte Carlo methods are widely used in mathematics, science, industry, commerce, 
and entertainment. They are at the heart of algorithms used to make predictions about 
stochastic processes, that is, phenomena having some random component. This includes the 
motion of microscopic particles in an environment, the generation and movement of data 
packets through networks, the arrival and servicing of vessels at a busy port, and hundreds of 
other processes about which people need answers. Random numbers are used directly in the 
transmission and security of data over the airwaves or along the Internet. A radio transmitter 
and receiver could switch transmission frequencies from moment to moment, seemingly at 
random, but nevertheless in synchrony with each other. The Internet data could be credit-card 
information for a consumer purchase, or a stock or banking transaction secured by the clever 
application of random numbers. And randomness is an essential ingredient in games of all sorts, 
computer or otherwise, to make for unexpected action and keen interest [1]. 

The simplest method for solving the Tsumego problem is to explore all the possible  
moves until all terminal moves are encountered, and then to determine the best move sequence 
for both players by a heuristic evaluation function. This approach requires enormous computing 
time, and thus we cannot use this kind of exhaustive searching in reality. So Monte-Carlo Tree 
Search (MCTS) is one key to solve the Tsumego problem in computer Go. 
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2. Research Method 
2.1. Monte-Carlo Tree Search 

Monte-Carlo Tree Search (MCTS) is a best-first search method that does not require a 
positional evaluation function. It is based on a randomized exploration of the search space. 
Using the results of previous explorations, the algorithm gradually builds up a game tree in 
memory, and successively becomes better at accurately estimating the values of the most-
promising moves. 

In Tsumego of computer games, one possible Evaluation Function (EF) is the Monte-
Carlo (MC) method. Given a board position B, its aim is to compute a value V(B) for this position. 
Starting from the position B, MC plays a certain number of simulated games. A simulated game 
is a succession of moves (called simulated moves), played until the end of the game is reached. 
The MC evaluation V(B) is then deduced from the results of all the simulated games. In the 
simplest version, simulated moves are random moves, and V(B) is the average of the outcomes 
of the simulated games. 

MCTS is mainly consists of four main steps: selection, expansion, simulation, and 
backpropagation. Each step has a strategy associated that implements a specific policy. In the 
selection step, the tree is traversed from the root node once we reach a node E and select a 
child of its which is not part of the tree. In the expansion step, that child is added to the tree. In 
the simulation step, moves are played in self-play until the end of the Tsumego and return it’s 
output. In the backpropagation step, the output is propagated backwards through the previous 
traversed nodes and the move played by the program is the child of the root with the highest 
visit count. 

 
2.2. Monte-Carlo  Tree Search in Tsumego of Computer Go 

MCTS is applicable if three conditions are satisfied: (1) the target is locked, (2) 
complete information, and (3) simulations terminate relatively fast. Tsumego meets all the 
conditions perfectly. Tsumego’s Target is clear-cut as present in section 1. Go has it’s clear 
rules. Tsumego is a small part of game, it’s length is limited of course. So MCTS is one of best 
solution to Tsumego of computer Go. 

The selection operated in the following way. From the initial local position, a selection 
strategy was applied recursively until a position was reached that was not a part of the 
sequence yet. At each move, the player could select one of few points of the position, which 
leaded to death or life. The more number of simulations was the more accurate of selection 
strategies for Tsumgego. 

In the expansion procedure, for the next move was so limited to full game, all children of 
a node were added to the tree when a certain number of simulations had been made through 
this node. Of course, one may forbid any node expansion to save memory before certain 
number of simulations had been made through this node. 

In the simulation procedure, progam selected moves itself until the game was over. The 
simulation strategy was the key to good performance gain in an MCTS program. The strategy 
should not become too stochastic nor too deterministic. At first, an urgency value Ui, was 
computed for each move i. At the second, taking the ungencies into account a move is randomly 
drawn. The probability of each move to be selected was calculated by Formulate (1). 
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where N is the set of all possible moves for a Tsumego problem. 

In the procedure of backpropagation, program propagated the result of a simulated 
game k backward from leaf node L to the nodes it had to traverse to reach this leaf node. The 
result was counted positively (Rk = +1) if the game was won, and negatively (Rk = −1) if the 
game was lost. Draws lead to a result Rk = 0. A backpropagation strategy was applied to 
compute the value vL of a node. 

The most popular and most effective strategy was Average, which toke the plain 
average of the results of all simulated Tsumego made through this node ,i.e.,  

( ) /L k Lk
v R n  . 
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Thus a confidence interval for Sn can be deduced. Let Sn be the value of the average 
that we would expect after an infinite number of stochastic games. There was 66% of 

confidence that Sn was within the interval[ / , / ]n nS n S n   , 95% confidence that Sn 

was within the interval, etc. Move Selection in Tsumego of computer Go was based on the 
results provided by this theorem.  

 
2.4. Move Selection in Tsumego of Computer Go 

Monte Carlo Tree Search is an optimal limited search methods which combining offline 
learning knowledge and online search. In the procedure of MCTS, we make online searching by 
method of UCT. We modify the prune method of UCT algorithm which is the basis of online 
searching to update it to MCTS algorithm. 

Pruning condition’s obtain are only dependent on the property of which the UCB 
algorithm to solve multi-armed bandits problem. Suppose that there is a K arm multi-armed 

bandits model, ia  represents the i-th arm， iv  represents the times that the i-th arm accessed 

currently, we represent times of the i-th arm won currently. ii
v v  represents the sum of 

times of all the arm accessed by now, ii
w w represents the sum of times of all the arm 

winning, there [1, ]i k .We know vi≥wi and v≥w because the winning times are always limited 

by the times of accessed. Now we use iv  represents the times which i-th arm is to be accessed 

and iw represents the times of that i-th arm will win. i ii
v v  represents the total sum of 

times of each arm to be accessed. i ii
w w represents the total sum of times of win, which is 

going to access. Same as above, Obviously, _1 _1v w and i iv w . V v v    reprents the 

expected total access times.  

The pruning conditions can be expressed as: If  j make 
2j

V
v  , then ai can be 

pruned when  1,...j K i j   . 

Obviously, if 
 

2j

V
v        1,...j K i j                                                                          (2) 

 

Then  
2i j

i j

V
v V v



                                                                                                (3) 

 

therefore / 2i jv V v                                       (4) 

 
We will always choose the next point which is accessed to the most frequently when we 

determine which point will become to final point with UCT algorithm.It ensures the final decision 
results which made according to the access times consistent with the results of original UCT 
because the node which is most frequently accessed will not meet the pruning conditions when 
using the pruning conditions. 

Perhaps there are nodes exceed half of the expected when the total access times is not 
reached that we expected if there exist the point that significantly better than the other nodes. 
Therefore, time is saved and simulation is finished in advance by add pruning conditon. 

We do not using all kinds of pruning conditions all the time for the following two points: 1) 
For each node has been joined, it is necessary take a large amount of time to calculate the 
each related parameters which is needed by each pruning condition if we judge it whether 
satisfies Pruning conditions every moment when access the node. 2) All kinds of state of the 
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node are unsTable when it is joined to game tree. So, we will divide each round of simulated 
time to N segment (1 second), and make a pruning to all the current nodes at the end of each 
time segment. 

 
 

3. Results and Analysis 
3.1. Less State Space  

To Game tree, it was consider that the number of nodes is the number of the state 
space for branch of Game tree constantly expanding-down. However, huge state space is a key 
factor which limites the accuracy of game tree search. The number of state space discreases 
after Combing game tree with idea of diagram for it only considers amount of true state space. 
And it makes evaluation more accracy to state space with sharing data. 

The following experimental data is the contrast between the game using replacement 
Table and those not using replacement Table. Table 1 canlenders average mumber per second 
of different expand time.  
 

Table 1. State number of game tree and vertex state number of game 
diagrame at diffrent time 

Time Number of state 
without using 

replacement Table 

Number of state 
with using 

replacement Table 
15 1 1 
13 2 1.2 
11 3 2.1 
9 5 3.2 
7 8 5.3 
5 11 8.7 
3 16 13.6 
1 21 21 

 
 
We can see from the Figure, with the increase in access time, the reduction in state 

space become apparent relatively. That is, the more game tree branch expansing, the more 
obvious effect of replacement Table.Due to the sharing of data, we can make more quick for 
exploring. 

 

 
Figure 2. Line Chart of State Number Of Game Tree and Vertex State Number of Game 

Diagrame At Diffrent Time 
 
 

3.2. Superior Ablebility to Solve Tsumego Problem 
We chose XIU XING TSUMEGO PROBLEM MASTERPIECE SETS which is written by 

famous professional player Hideyuki Fujisawa. It contains four difficulty Tsumego problem 
(primary, intermediate, high level and high Duan). Especially the Tsumgo problem of high Duan 
difficulty, it is complex even professional player need long time to give right answer. Table 2 
shows the answer circumstances of these four difficulty Tsumego problem. To primary, 
intermediate and high level difficulty Tsumego problem, we set 5 minutes as it’s time limit. 
Tsumego problem solving is failure if solving time exceeds 10 minutes. And to high duan 
difficulty Tsumego problem, 60 minutes is it’s time limit. 
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Table 2. Answer Circumstances of Four Difficulty Tsumego Problem 

difficulty 
Number of 
Tsumego 
problem 

Number of 
Right answer 

Correct 
Rate 

Longest right 
answer time 

Shortest right 
answer time 

Average right 
answer time 

Primary 40 38 0.95 4.367 0.001 0.612 
Intermediate 39 35 0.9 5.332 0.001 0.287 

High level 61 54 0.89 12.533 0.003 0.934 
High Duan 23 18 0.78 1898.9 0.006 145.6 

 
 
Table 3 shows five Tsumego problem of high Duan difficultythe which spend longest 

time to answer it. Especially the 163th Tsumego problem, Hideyuki Fujisawa had expressed that 
even the professional player could not resolve it without a few hours thinking. 

 
 

Table 3. Answer Circumstances of High Duan 
Number of 
Tsumego 
problem 

Empty point of 
Tsumego 
problem 

Searching 
situation 

Max seaching 
depth 

Answer time 

162 25 836218537 75 1898.8 
154 22 124920345 74 342.6 
163 21 71483243 55 170.3 
161 20 4020458 99 95.6 
149 22 4937646 53 13.8 

 
 
4. Conclusion 

Monte-Carlo method generated a list of potential moves, and for each move playing out 
hundreds of games at random on the resulting board of Tsumego. It was a best-first search 
method that does not require a positional evaluation function in contrast to search. MCTS was 
based on a randomized exploration of the search space. Using the results of previous 
explorations, MCTS gradually build a game tree in memory, and successively becomes better at 
accurately estimating the values of the most promising moves. The advantage of this technique 
was that it requires very little domain knowledge or expert input, the trade-off being increased 
memory and processor requirements. Dislike the whole game, the moves used for evaluation 
are generated at random and it is possible that a move which would be excellent except for one 
specific opponent response would be mistakenly evaluated as a good move. Monte-Carlo 
Method in Tsumego cared neither overall strategic sense nor tactically, so we don’t consider 
domain knowledge. 
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