
TELKOMNIKA, Vol. 11, No. 2, February 2013, pp. 667~673
ISSN: 2302-4046
  667

Received August 29, 2012; Revised December 23, 2012; Accepted January 11, 2013

Application of MCTS in Tsumego of Computer Go

Fang Wang*, Ying Peng

Institution College of Computer Science and Technology Southwest University for Nationalities, Chengdu,
China. addres, 0086-18981790887/0086-028-85522523

*Corresponding author, e-mail:livenski@163.com

Abstract
The Tsumego problem in Go was a basic and essential problem to be overcome in implementing

a computer Go program. This paper proposed a reality of Monte-Carlo tree search in Tsumego of
computer Go which using Monte-Carlo evaluation as an alternative for a positional evaluation function. The
advantage of this technique was that it requires few domain knowledge or expert input.

Keywords: Tsumego, Monte-Carlo tree search, the law of large numbers, computer Go

 Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Tsumego problems have been found in Chinese books dating back to around the 13th
century. They are presumably composed and collected from actual games much earlier. They
range from situations that occur quite commonly, which every strong player ought to be familiar
with, to deliberately difficult puzzles. Some books of the latter type are still used for professional
training.

Several conventions are used in the problems. The objective is to kill a group or prevent
it from being killed. Problems do not specify how many plays are in the solution (as would be
usual in a chess problem), because the goal of the problem is rarely to capture stones; as soon
as the correct first move is played, the threatened group can be considered alive (or dead).
Solution diagrams will either show the most tenacious resistance that the opponent can offer, or
lines that require interesting or tricky tactics. If only part of the board is shown, as is usually the
case, the rest of the board can be assumed to be empty. The modern convention is that well
composed problems do not allow the threatened group to escape into empty areas of the board
(this is one way in which such problems differ from real games), although escape and recapture
was a theme in classical problems.

The Monte Carlo method is a technique for analyzing phenomena by means of
computer algorithms that employ, in an essential way, the generation of random numbers. The
Monte Carlo method was given its name by Stanislaw Ulam and John von Neumann, who
invented the method to solve neutron diffusion problems at Los Alamos in the mid1940s.

Monte Carlo methods are widely used in mathematics, science, industry, commerce,
and entertainment. They are at the heart of algorithms used to make predictions about
stochastic processes, that is, phenomena having some random component. This includes the
motion of microscopic particles in an environment, the generation and movement of data
packets through networks, the arrival and servicing of vessels at a busy port, and hundreds of
other processes about which people need answers. Random numbers are used directly in the
transmission and security of data over the airwaves or along the Internet. A radio transmitter
and receiver could switch transmission frequencies from moment to moment, seemingly at
random, but nevertheless in synchrony with each other. The Internet data could be credit-card
information for a consumer purchase, or a stock or banking transaction secured by the clever
application of random numbers. And randomness is an essential ingredient in games of all sorts,
computer or otherwise, to make for unexpected action and keen interest [1].

The simplest method for solving the Tsumego problem is to explore all the possible
moves until all terminal moves are encountered, and then to determine the best move sequence
for both players by a heuristic evaluation function. This approach requires enormous computing
time, and thus we cannot use this kind of exhaustive searching in reality. So Monte-Carlo Tree
Search (MCTS) is one key to solve the Tsumego problem in computer Go.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 667 – 673

668

2. Research Method
2.1. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method that does not require a
positional evaluation function. It is based on a randomized exploration of the search space.
Using the results of previous explorations, the algorithm gradually builds up a game tree in
memory, and successively becomes better at accurately estimating the values of the most-
promising moves.

In Tsumego of computer games, one possible Evaluation Function (EF) is the Monte-
Carlo (MC) method. Given a board position B, its aim is to compute a value V(B) for this position.
Starting from the position B, MC plays a certain number of simulated games. A simulated game
is a succession of moves (called simulated moves), played until the end of the game is reached.
The MC evaluation V(B) is then deduced from the results of all the simulated games. In the
simplest version, simulated moves are random moves, and V(B) is the average of the outcomes
of the simulated games.

MCTS is mainly consists of four main steps: selection, expansion, simulation, and
backpropagation. Each step has a strategy associated that implements a specific policy. In the
selection step, the tree is traversed from the root node once we reach a node E and select a
child of its which is not part of the tree. In the expansion step, that child is added to the tree. In
the simulation step, moves are played in self-play until the end of the Tsumego and return it’s
output. In the backpropagation step, the output is propagated backwards through the previous
traversed nodes and the move played by the program is the child of the root with the highest
visit count.

2.2. Monte-Carlo Tree Search in Tsumego of Computer Go

MCTS is applicable if three conditions are satisfied: (1) the target is locked, (2)
complete information, and (3) simulations terminate relatively fast. Tsumego meets all the
conditions perfectly. Tsumego’s Target is clear-cut as present in section 1. Go has it’s clear
rules. Tsumego is a small part of game, it’s length is limited of course. So MCTS is one of best
solution to Tsumego of computer Go.

The selection operated in the following way. From the initial local position, a selection
strategy was applied recursively until a position was reached that was not a part of the
sequence yet. At each move, the player could select one of few points of the position, which
leaded to death or life. The more number of simulations was the more accurate of selection
strategies for Tsumgego.

In the expansion procedure, for the next move was so limited to full game, all children of
a node were added to the tree when a certain number of simulations had been made through
this node. Of course, one may forbid any node expansion to save memory before certain
number of simulations had been made through this node.

In the simulation procedure, progam selected moves itself until the game was over. The
simulation strategy was the key to good performance gain in an MCTS program. The strategy
should not become too stochastic nor too deterministic. At first, an urgency value Ui, was
computed for each move i. At the second, taking the ungencies into account a move is randomly
drawn. The probability of each move to be selected was calculated by Formulate (1).

kk N

Uj
i U

p


 
 (1)

where N is the set of all possible moves for a Tsumego problem.

In the procedure of backpropagation, program propagated the result of a simulated
game k backward from leaf node L to the nodes it had to traverse to reach this leaf node. The
result was counted positively (Rk = +1) if the game was won, and negatively (Rk = −1) if the
game was lost. Draws lead to a result Rk = 0. A backpropagation strategy was applied to
compute the value vL of a node.

The most popular and most effective strategy was Average, which toke the plain
average of the results of all simulated Tsumego made through this node ,i.e.,

() /L k Lk
v R n  .

TELK

2.3. M

learn
seque
analy

Figur
Pr
G

three
funct
first m
illustr
Figur

three
funct
first m
illustr
Figur

took
stand
lower

and i
by µ

nS 
avera
infinit
stoch
precis
avera
with m

close

is tha
the in

KOMNIKA

Move Select
Human p

t from exper
ence of mov
ysis was the

(

re 1. Illustrat
roblem. (b) C
Game Tree S

The eye

e points whic
ion. The com
moves in Fi
rated the set
re 1(e) and F

The eye
e points whic
ion. The com
moves in Fi
rated the set
re 1(e) and F

Each Tsu
the values R

dard deviatio
r than 50.

Let 1,R R

dentically di
µ and finite

1(R R 
ages conver
ty. The class
hastic fluctua
sely, it state
age Sn and i
mean 0 and

e to the norm

at the distribu
ndividual Ri’s

tion in Tsum
players selec
rience during
es for both p
only one me

(a)

(d)

ion of A Life-
Candidate Fir
Searching. (e

shape analy
ch were the
mbined set o
gure 1(d), fo
t of first mo

Figure 1(f) we
shape analy

ch were the
mbined set o
gure 1(d), fo
t of first mo

Figure 1(f) we
umego i that
Ri. The Ri v
on σ=D(Ri).

2, , nR R  be

stributed ran
e variances

) /nR n of the

ged in prob
sical central
ations aroun

es that as n
its limit µ, wh
 variance σ2

mal distributio

ution of n a
s.

IS

Applicatio

mego of Com
cted their own
g they had pl
players based
ethod to extra

-and-death P
rst Moves. (c
e) and (f) The

yzer generate
set of poss

of candidate
or solving th
ves to creat
ere the corre
yzer generate

set of poss
of candidate
or solving th
ves to creat
ere the corre
t was played
values were
In the Tsum

e a random s

ndom variab
given by

ese random

ability and a
limit theorem

nd the dete
gets larger,
hen blown up
2. For fixed

on with mean

approaches

SSN: 2302-40

on of MCTS

mputer Go
n vital point
ayed games
d on the pos
act a set of fi

 (b)

 (e)

Problem and
c) Possible V
e Sorrect seq

ed a set of p
sible vital mo
first moves

he life-and-d
te the nodes
ct sequence
ed a set of p
sible vital mo
first moves

he life-and-d
te the nodes
ct sequence

d had a resu
bounded, so

mego, Ri ofte

sample of siz

les drawn fro
σ2. We w

variables. B

almost surely
m describes
erministic nu

the distribut
p by the fact
large n one

n µ and varia

normality reg

046

in Tsumego

in a few sec
s. And then t
ssible vital po
rst moves.

A Set of Firs
Vital Moves. (
quence of Mo

possible vital
oves genera
and possible

death problem
s in the first
 of moves to

possible vital
oves genera
and possible

death problem
s in the first
 of moves to
lt Ri. Let R

o R had an
en belongs t

e n—that wa

om distributi
were interest

By the law o

y to the exp
the size and

umber µ du
tion of the d
tor , approx
can also sa

ance 21

n
 . T

gardless of t

of Compute

onds by Go
hey deeply e

oint. For Tsum

 (c)

 (f)

st Moves. (a)
(d) A Set of F
oves to Kill B

l moves. Fig
ated by the h
e vital moves
m in Figure
level of the

o kill black’s g
l moves. Fig

ated by the h
e vital moves
m in Figure
level of the

o kill black’s g
be the rando
average val

to [-100,100]

as, a sequen

ions of expe
ted in the

of large num

pected value
d the distribu
ring this co
ifference bet
ximates the n
y that the di

The usefulne

the shape of



r Go (Fang W

sense, whic
examined the
mego, eyes s

) A Life-and-
First Moves F
Black’s Group

gure 1(c) sho
heuristic influ
s became a

1(a). Figure
e game tree.
group.
gure 1(c) sho
heuristic influ
s became a

1(a). Figure
e game tree.
group.
om variable
ue µ=E(Ri)
] and σ is u

nce of indepe

ected values
sample av

mbers, the sa

e µ as n ten
utional form
onvergence.
tween the sa
normal distri
istribution of

ess of the the

f the distribut



Wang)

669

h was
e best
shape

death
For
p.

ow the
uence
set of

e 1(d)
. Both

ow the
uence
set of

e 1(d)
. Both

which
and a

usually

endent

given
verage

ample

nds to
of the
More

ample
bution
f Sn is

eorem

tion of

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 667 – 673

670

Thus a confidence interval for Sn can be deduced. Let Sn be the value of the average
that we would expect after an infinite number of stochastic games. There was 66% of

confidence that Sn was within the interval[/ , /]n nS n S n   , 95% confidence that Sn

was within the interval, etc. Move Selection in Tsumego of computer Go was based on the
results provided by this theorem.

2.4. Move Selection in Tsumego of Computer Go

Monte Carlo Tree Search is an optimal limited search methods which combining offline
learning knowledge and online search. In the procedure of MCTS, we make online searching by
method of UCT. We modify the prune method of UCT algorithm which is the basis of online
searching to update it to MCTS algorithm.

Pruning condition’s obtain are only dependent on the property of which the UCB
algorithm to solve multi-armed bandits problem. Suppose that there is a K arm multi-armed

bandits model, ia represents the i-th arm， iv represents the times that the i-th arm accessed

currently, we represent times of the i-th arm won currently. ii
v v represents the sum of

times of all the arm accessed by now, ii
w w represents the sum of times of all the arm

winning, there [1,]i k .We know vi≥wi and v≥w because the winning times are always limited

by the times of accessed. Now we use iv represents the times which i-th arm is to be accessed

and iw represents the times of that i-th arm will win. i ii
v v represents the total sum of

times of each arm to be accessed. i ii
w w represents the total sum of times of win, which is

going to access. Same as above, Obviously, _1 _1v w and i iv w . V v v  reprents the

expected total access times.

The pruning conditions can be expressed as: If j make
2j

V
v  , then ai can be

pruned when  1,...j K i j   .

Obviously, if

2j

V
v   1,...j K i j   (2)

Then
2i j

i j

V
v V v



   (3)

therefore / 2i jv V v  (4)

We will always choose the next point which is accessed to the most frequently when we

determine which point will become to final point with UCT algorithm.It ensures the final decision
results which made according to the access times consistent with the results of original UCT
because the node which is most frequently accessed will not meet the pruning conditions when
using the pruning conditions.

Perhaps there are nodes exceed half of the expected when the total access times is not
reached that we expected if there exist the point that significantly better than the other nodes.
Therefore, time is saved and simulation is finished in advance by add pruning conditon.

We do not using all kinds of pruning conditions all the time for the following two points: 1)
For each node has been joined, it is necessary take a large amount of time to calculate the
each related parameters which is needed by each pruning condition if we judge it whether
satisfies Pruning conditions every moment when access the node. 2) All kinds of state of the

TELKOMNIKA ISSN: 2302-4046 

Application of MCTS in Tsumego of Computer Go (Fang Wang)

671

node are unsTable when it is joined to game tree. So, we will divide each round of simulated
time to N segment (1 second), and make a pruning to all the current nodes at the end of each
time segment.

3. Results and Analysis
3.1. Less State Space

To Game tree, it was consider that the number of nodes is the number of the state
space for branch of Game tree constantly expanding-down. However, huge state space is a key
factor which limites the accuracy of game tree search. The number of state space discreases
after Combing game tree with idea of diagram for it only considers amount of true state space.
And it makes evaluation more accracy to state space with sharing data.

The following experimental data is the contrast between the game using replacement
Table and those not using replacement Table. Table 1 canlenders average mumber per second
of different expand time.

Table 1. State number of game tree and vertex state number of game
diagrame at diffrent time

Time Number of state
without using

replacement Table

Number of state
with using

replacement Table
15 1 1
13 2 1.2
11 3 2.1
9 5 3.2
7 8 5.3
5 11 8.7
3 16 13.6
1 21 21

We can see from the Figure, with the increase in access time, the reduction in state

space become apparent relatively. That is, the more game tree branch expansing, the more
obvious effect of replacement Table.Due to the sharing of data, we can make more quick for
exploring.

Figure 2. Line Chart of State Number Of Game Tree and Vertex State Number of Game

Diagrame At Diffrent Time

3.2. Superior Ablebility to Solve Tsumego Problem
We chose XIU XING TSUMEGO PROBLEM MASTERPIECE SETS which is written by

famous professional player Hideyuki Fujisawa. It contains four difficulty Tsumego problem
(primary, intermediate, high level and high Duan). Especially the Tsumgo problem of high Duan
difficulty, it is complex even professional player need long time to give right answer. Table 2
shows the answer circumstances of these four difficulty Tsumego problem. To primary,
intermediate and high level difficulty Tsumego problem, we set 5 minutes as it’s time limit.
Tsumego problem solving is failure if solving time exceeds 10 minutes. And to high duan
difficulty Tsumego problem, 60 minutes is it’s time limit.

21
18.5

16
13.5

11

21

16.6
13.6

10.8
8.7

0

5

10

15

20

25

30

1 2 3 4 5

Number of state without

using replacement table
Number of state with using

replacement table

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 2, February 2013 : 667 – 673

672

Table 2. Answer Circumstances of Four Difficulty Tsumego Problem

difficulty
Number of
Tsumego
problem

Number of
Right answer

Correct
Rate

Longest right
answer time

Shortest right
answer time

Average right
answer time

Primary 40 38 0.95 4.367 0.001 0.612
Intermediate 39 35 0.9 5.332 0.001 0.287

High level 61 54 0.89 12.533 0.003 0.934
High Duan 23 18 0.78 1898.9 0.006 145.6

Table 3 shows five Tsumego problem of high Duan difficultythe which spend longest

time to answer it. Especially the 163th Tsumego problem, Hideyuki Fujisawa had expressed that
even the professional player could not resolve it without a few hours thinking.

Table 3. Answer Circumstances of High Duan
Number of
Tsumego
problem

Empty point of
Tsumego
problem

Searching
situation

Max seaching
depth

Answer time

162 25 836218537 75 1898.8
154 22 124920345 74 342.6
163 21 71483243 55 170.3
161 20 4020458 99 95.6
149 22 4937646 53 13.8

4. Conclusion

Monte-Carlo method generated a list of potential moves, and for each move playing out
hundreds of games at random on the resulting board of Tsumego. It was a best-first search
method that does not require a positional evaluation function in contrast to search. MCTS was
based on a randomized exploration of the search space. Using the results of previous
explorations, MCTS gradually build a game tree in memory, and successively becomes better at
accurately estimating the values of the most promising moves. The advantage of this technique
was that it requires very little domain knowledge or expert input, the trade-off being increased
memory and processor requirements. Dislike the whole game, the moves used for evaluation
are generated at random and it is possible that a move which would be excellent except for one
specific opponent response would be mistakenly evaluated as a good move. Monte-Carlo
Method in Tsumego cared neither overall strategic sense nor tactically, so we don’t consider
domain knowledge.

References
[1] Ronald W Shonkwiler, Franklin Mendivil. Explorations in Monte Carlo Methods. Springer. 2009
[2] Abramson B. Expected-Outcome: A General Model of Static Evaluation. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 1990; 12(2): 182–193.
[3] Allis LV, Meulen M, Van Der, Herik HJ. Proof-Number Search. Artificial Intelligence. 1994; 66(1): 91–

123.
[4] Auer P, Cesa-Bianchi, Fischer P. Finite-Time Analysis of the Multi-Armed Bandit Problem. Machine

Learning. 2002; 47(2–3), 235–256.
[5] Barto AG, Bradtke SJ, Singh SP. Learning to Act using Real-Time Dynamic Programming. Artificial

Intelligence. 1995; 72(1–2), 81–138.
[6] Baxter J, Tridgell A, Weaver L. Experiments in Parameter Learning Using Temporal Differences.

ICCA Journal. 1998; 21(2), 84–99.
[7] Beal DF, Smith MC. Temporal Difference Learning for Heuristic Search and Game Playing.

Information Sciences. 2000; 122(1): 3–21.
[8] Berger F. BGBlitz Wins Backgammon Tournament. ICGA Journal. 2007; 30(2): 114.
[9] Berliner HJ. The B*-Tree Search Algorithm: A Best-First Proof Procedure. Artificial Intelligence. 1979;

12: 123–40.
[10] Boer PT de, Kroese DP, Mannor S, Rubinstein RY. A Tutorial on the CrossEntropy Method. Annals of

Operations Research. 2005; 134(1): 19–67.
[11] Bouzy B. Mathematical Morphology Applied to Computer Go. International Journal of Pattern

Recognition and Artificial Intelligence. 2003; 17(2): 257–268.

TELKOMNIKA ISSN: 2302-4046 

Application of MCTS in Tsumego of Computer Go (Fang Wang)

673

[12] Bouzy B. Associating Domain-Dependent Knowledge and Monte Carlo Approaches within a Go
Program. Information Sciences, Heuristic Search and Computer Game Playing IV. 2005; 175(4): 247–
257.

[13] Bouzy B, Cazenave T. Computer Go: An AI Oriented Survey. Artificial Intelligence. 2001; 132(1): 39–
103.

[14] Buro M. Toward Opening Book Learning. ICCA Journal. 1999; 22(2): 98–102.
[15] Campbell M, Hoane AJ, Hsu FH. Deep Blue. Artificial Intelligence. 2002; 134(1–2): 57–83.
[16] Chaslot GM J-B, Winands MHM, Herik HJ van den. Parallel Monte Carlo Tree Search. Computers and

Games. 2008; 5131 of LNCS: 60–71.
[17] Chaslot GM J-B, Winands MHM, Szita I, Herik HJ van den. CrossEntropy for Monte-Carlo Tree

Search. ICGA Journal. 2008; 31(3): 145–156.
[18] Chaslot GM J-B, Winands MHM, Herik HJ van den, Uiterwijk JWHM, Bouzy B. Progressive Strategies

for Monte-Carlo Tree Search. New Mathematics and Natural Computation. 2008; 4(3): 343–357.
[19] Chen Z. Semi-Empirical Quantitative Theory of Go Part I: Estimation of the Influence of a Wall. ICGA

Journal. 2002; 25(4): 211–218.
[20] Coulom R. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Computers and

Games. 2006; 4630 of LNCS: 72–83.
[21] Gelly S, Wang Y. MoGoWins 19×19 Go Tournament. ICGA Journal. 2007; 30(2): 111–112.
[22] Winands MHM, Herik HJ van den. Proof-Number Search and Its Variants. Oppositional Concepts in

Computational Intelligence. 2008; 155: 91–118.
[23] Kloetzer J, Iida H, Bouzy B. Playing Amazons Endgames. ICGA Journal. 2009; 32(3): 140–148.
[24] Lee CS, Wang MH, Chaslot, GMJB, Hoock JB, Rimmel A, Teytaud O, Tsai SR, Hsu SC, Hong TP.

The Computational Intelligence ofMoGo Revealed in Taiwan’s Computer Go Tournaments. IEEE
Transactions on Computational Intelligence and AI in Games. 2009; 1(1): 73–89.

[25] Lishout F, Chaslot GMJB, Uiterwijk JWHM. Monte-Carlo Tree Search in Backgammon. Proceedings of
the Computer Games Workshop. 2007; 175–184.

[26] Schadd MPD, Winands MHM, Herik HJ van den, Chaslot GMJB, Uiterwijk JWHM. Single-Player
Monte-Carlo Tree Search. Computers and Games. 2008; 5131 of LNCS; 1–12.

[27] Schadd MPD, Winands MHM, Herik HJ van den, Chaslot GMJB, Uiterwijk JWHM, Bergsma MHJ.
2008; 4(3): 369–384.

[28] Audibert JY, Bubeck S. Minimax Policies for Adversarial and Stochastic Bandits. Proceedings of the
22nd Annual Conference on Learning Theory. 2009.

[29] Chaslot G, Bakkes S, Szita I, Spronck P. Monte-Carlo Tree Search: A New Framework for Game AI.
Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference. 2008;
216–217.

[30] Gelly S, Silver D. Combining Online and Offline Knowledge in UCT. ICML’07: Proceedings of the
24th International Conference on Machine Learning 2008; 273–280.

[31] Gelly S, Hoock JB, Rimmel A, Teytaud O, Kalemkarian Y. The Parallelization of Monte-Carlo Planning
Parallelization of MC-Planning. Proceedings of the Fifth International Conference on Informatics in
Control, Automation and Robotics, Intelligent Control Systems and Optimization. 2008; 244–249.

