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Abstract 
The articulated arm coordinate measuring machine (AACMM) is a new type coordinate measuring 

machine (CMM) base on the linkage structure. The kinematic model of a 6-DOF AACMM with DH method 
was established, and from the kinematic model the coordinate systems and joint structural parameters of 
the AACMM are obtained. The Jacobian matrix was deduced by differential transformation from the 
kinematic model of the AACMM, and according to the Jacobian matrix, the error transfer coefficients of the 
joint structural parameters were calculated. Then with the calculation results the influence of the joint 
structural parameters on the measuring accuracy of the AACMM was analyzed, which provides a 
theoretical basis for calibration, tolerance distribution of the joint parts and components' selection of the 
AACMM. 
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1. Introduction 

The AACMM is a multi-DOF (typically 6-DOF) and non-Cartesian coordinate measuring 
machine (CMM), which is modeled according to the structure of human joints: a series of 
linkages connected by rotating joints. Comparing with traditional CMMs the AACMM has the 
features of small size, light weight, large measurement range, flexible and can be applied in 
industrial site [1]. With these unique advantages the AACMM has been applied in the field of 
mold design, product quality online testing, equipment maintenance and assembly [2]. 

The AACMM belongs to open chain structure mechanisms which are seemingly simple, 
but in fact it can result in complex kinematic modeling [3]. The transformation from the joint 
space to the measuring space of the AACMM is rather complex and nonlinear, which results in 
that it is difficult to identify the influence of the joint structural parameters on the measurement 
accuracy. Studied the influence of the joint structural parameters on the measurement accuracy 
with numerical simulation based on DH method [4]. Studied the problem with the same method, 
but the kinematic modeling is based on the local product of exponentials , and reached 
substantially the same conclusions [5]. Howerver, only some specific parameter errors were 
used to calculate the measurement error in [4] [5], so it is not an integral result. The physical 
meaning of the Jacobian matrix is the error transfer coefficient [6] [7], which can completely 
describe the error transfer from the joint space to the measuring space. 
 
 
2. Kinematic Modeling of the AACMM 
2.1. Kinematic modeling method for the AACMM 

The kinematic model, also known as measurement model, is the mathematical basis of 
the AACMM, which can achieve the coordinate transformation from the joint space to the 
measurement space. Due to the structures of the AACMM and robot are similar, the kinematic 
modeling methods of the AACMM are also used in robot field. With the characteristics of simple, 
clear physical meaning and easy to program implementation DH method has been the 
mainstream method of robot kinematic modeling. The main problems of DH method is 
parameters in DH model are difficult to be measured or identified, and when two adjacent joint 
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axes are parallel or nearly parallel the homogeneous transformation matrix will be singular and 
ill-conditioned. The adjacent joint axes of the AACMM are generally perpendicular. This feature 
makes the AACMM particularly suitable to model with DH method, so most AACMM kinematic 
model are established with DH method. 

As there is some flexibility in modeling with DH method, the kinematic models of 
AACMM established by different people are not exactly the same. Contains a product result of 6 
matrixes and a vector [8] , which contains 27 parameters. Contains a product result of 7 
matrixes and a vector, which contains 25 parameters [9] and the kinematic model contains 23 
parameters [1]. 

In recent years, in addition to DH method there has been a new modeling method for 
robots named product of exponentials (POE). Huang [5] established the kinematic model of a 
AACMM with POE method in which there are 88 parameters. Compared with the kinematic 
model based on DH method the kinematic model based on POE can describe the motion 
characteristics of the AACMM completely [10]. But too many parameters results in too complex 
description, and make it is even more complex for the further work [11] (calibration, motion 
control and error compensation) of AACMM. In this paper, we use DH method for kinematic 
modeling of the AACMM. 

 
2.2. Kinematic modeling for an AACMM 

The structure of the AACMM studied in this paper is shown in Figure 1. It mainly 
composed of a base, six rotating joints, two linkages and a probe. 

                       
               

 
 
 
According to DH method the first step of kinematic is to establish corresponding 

coordinate system on each linkage of the AACMM, and then the kinematic equation is the 
product of the coordinate transformation. The coordinate systems of the AACMM established 
with DH method are shown in Figure 2. 

There are five groups of parameters in kinematic model of the AACMM: linkage length 
di, joint length ai, torsion angle αi, joint angle θi and offset of probe l, where i=1~6. The values of 
these parameters are shown in Table 1. 

The coordinate transformation of adjacent joint coordinate system {xiyizi} and {xi-1yi-1zi-1} 
can be achieved through two rotations and two translations [12]: 
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Figure 1. The structure of the AACMM Figure 2. The coordinate 
systems of the AACMM 
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Table 1. Joint Structural Parameters of the AACMM 
i di [mm] ai [mm] αi [°] θi [°] l [mm] 
1 300 0 90 θ1 183.5 
2 65.5 0 90 θ2 - 
3 792.7 0 90 θ3 - 
4 65.5 0 90 θ4 - 
5 883.2 0 90 θ5 - 
6 0 0 90 θ6 - 

 
 

According to the homogeneous transformation principle Eq. 1 can be written as Eq. 2. 
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The coordinates of the probe in the base coordinate system {o0x0y0z0} are: 
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3. Jacobian Matrix of the AACMM 

The coordinates of the probe can be wrriten in the functional form of the joint structural 
parameters: 
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After fully differential of Eq.4 ~ Eq.6 the follow equations can be obtained. 
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Eq.7 ~ Eq.9 can be written in matrix format: 
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Assigning the 3×25 matrix to J, then J is the Jacobian matrix of the AACMM. 
 
 

4. Analysis of Error Transfer Coefficients 
In this section, the error transfer coefficients of the joint structral parameters (di, ai, l, αi 

and θi) was calculated base on the Jacobian matrix. 
 

4.1. Error Transfer Coefficients of di, ai and l 
From the Jacobian matrix of J the following equations can be deduced. 
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Eq.11 ~ Eq.13 show that the error transfer coefficients of the structual parameters of di, 

ai and l are all equal to 1, which means that the errors of the di, ai and l are directly transferred 
to the measurement error without being enlarged or reduced. 

 
 
 

4.2. Error Transfer Coefficients of αi and θi 

The error transfer coefficients of αi and θi are x
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dozens of expressions, so the other coefficients aren’t listed in this paper for space limitation. 
The expressions of the coefficients consist of di, ai, l and the trigonometric functions of αi and θi, 
so the coefficients are not only related to the joint structural parameters but also the pose of the 
AACMM. The averages of the error transfer coefficients were calculated with 10000 poses 
generated through Mont Carlo method, as shown in Table 2. 

 
 

Table 2. The Average Error Transfer Coefficients of αi and θi 
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1 384.87 395.84 367.77 501.61 496.62 0 
2 568.02 578.28 232.63 394.68 385.32 609.88 
3 311.40 310.46 239.77 310.53 308.82 230.78 
4 475.54 480.67 353.12 421.28 422.54 474.16 
5 60.14 60.13 56.52 58.72 57.79 54.43 
6 93.76 93.77 87.71 89.25 91.92 93.86 

 
 
Table 2 shows that the error transfer coefficients of αi and θi are very large, which 

means that αi and θi have a significant influence on the measurement accuracy of the AACMM. 
 
 
5. Conclusions 

This paper studied the kinematic modeling methods for linkage structural robots and 
estalished the kinematic model for a 6-DOF AACMM with DH method. Jacobian matrix were 
used to calculate the error transfer coefficients, the results show that the joint structural 
parameters of αi and θi have a significant influence on the measurement accuracy of the 
AACMM while di, ai and l have relatively small influence. So the angle sensors, bearings and 
other components which influence the accuracy of αi and θi greatly must be high precision.  
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