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 The distribution of scheduler from user inquiries in the clouds is complex.  
In keeping up with the cloud computing environment and the inquirers,  
the clouds meet with some problematic load balancing complications as an 

improving load balancing tool induces the rigorous efficiency of the cloud 
based website’s user access. Overloaded or underloaded conditions originate 
processing catastrophe regarding the prolonged execution time, bandwidth 
hog, malfunction, and etc. Besides, to manipulate Erlang concurrent tasks is 
another skyward situation. Hence, the load balancing is obliged to exhaust all 
mentioned conditions. The proposed load balancing algorithm for Erlang 
concurrent tasks (those are and could also be autonomous and unstable.) on 
VMware workstations is introduced. There are several load patterns within 
the clouds corresponding to CPU’s load (utilization), memory load (queue 

size), link capacity load (bandwidth), and so on. The proposed load balancing 
is to spot underloaded and overloaded conditions then stabilizes the weight 
amidst computing nodes. There are countless load balancing approaches in 
the cloud environment to examine performance parameters. A short outline 
of corresponding performance metrics in the review and their findings are 
presented. To investigate the fit efficiency of the proposed algorithm,  
the simulation is applied then results based on the proposed method are 
compared to the existing ones. The outcomes settle the weight balancing, 

outperform others when executing Erlang traffic, and are catered in  
the context. 
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1. INTRODUCTION  

Users are looking ahead to more designated applications that come from the swift fetch of precise 

transactions requested by end-user operation. Virtual machines (VMs) are crucial to a digitally modern 

organization, and figuring out how they maneuver is the key to the accomplishment of implementing any 

virtualization solutions. VMs are truly computing power within computing machines. The VM profits tension 
off the hardware and is associated into single station for the comfortable access and well-being observation. 

This tolerates IT staff to better audit security issues and allows system administrator to easily maintain [1]. 

Instead of configuring a firewall for all devices before connecting the network, all data can be secured in the 

data center. A VM provides user’s processes based on the abstraction for virtualization [2]. It is the level 

where the VMs opt for the physical part the common type of virtualization occurs. The physical part operates 

and controls VMs on a centralized server (on-premise host or cloud based host) in order that it can be easier 

to reach by several users. In practice, we can carry out several VMs on a host machine to opt PC 

virtualization technology. Data is not warehoused on the user devices any longer, which only need 

unintelligent devices to do online access. The VM per se can reside on the device as well to access the same 
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information in the clouds. Moreover, VMs can support organizations a security issue. As user devices are 

kept on the host machine, tolerating IT staff to secure all users at once. This level of security cuts off 

turnaround time when the attack starts; possibly securing associated transactions. The VM protects by 

allowing users to steadily access records distantly and rejects security threats from unauthorized devices in 

the network [3]. 

Metzler, et al [4] present that the noticeable benefit of software test is a harsh inspection of software 

behaviors. In the case of bulky state spaces of concurrent software and probabilistic scheduler, the test 

process is slow as well as leads to a huge delay between the utilization and completion of concurrent 
programs. They outline an innovative approach to verify concurrent software and to reduce the latency.  

By controlling the execution of concurrent software due to a trivial set of tolerable schedules, verification 

time is low. The evaluation based on benchmark software confirms that the overhead due to execution time is 

practical to existing theoretical frameworks. Another article treats a memory for concurrent software by 

restricting the abstraction level [5]. Hanxleden, et al [6] mention that the synchronous language confirms 

fixed concurrency but the cost of restrictions on concurrent programs is considered whether it is constructive 

or valid. The serial C language and Java script provide an intuitive programming model but give no guarantee 

to fixed concurrent programs. They investigate classes of shared accesses, define serial set of tolerable 

scheduling as a picture of “free scheduler”, then stem the concept of serial productiveness, and apply a 

priority to the scheduling algorithm for evaluating software efficiency. Liang and Feng [7] describe an 

existing research on verifying concurrent tasks only focuses on certainty, e.g., linearization or correctness. 

These things are challenging to verify as they tolerate the progress of a single thread to another based on the 
unweighted scheduler. The authors propose new program logic with guarantee for testing linearization then 

progressing concurrent tasks under fair scheduler. Finally, they apply the program logic to verify deadlock-

free algorithm for instance queue locks or coupling lock. 

The verification of concurrent applications written in low-level languages is introduced by [8].  

The verification solves the state-space explosion problem due to multiple threads execution. Bounded Model 

Checking (BMC) cannot iron out the problem as such in practice. In this research, the authors propose a 

method to conquer the constraint of the state-space used in the BMC technique. They apply under-

estimations of lazy demand-driven improvement and data flow of shared memory. They also have 

implemented a prototype to evaluate potential performance metrics. Articles on load balancing in the cloud 

computing environment are outlined in [9, 10].  

To distribute the workload on the distributed processors is important. It is supporting divides and 
conquers procedure, which is the cost-effective scheme for load balancing complications. Load balancing 

becomes the main issue for scheduler in Cloud computing system. The authors [11] propose algorithm based 

on optimization techniques such as min-max and max-max schemes and apply for FCC network. 

Performance metrics such as speedup and utilization are collected. Results based on the proposed algorithm 

show better in comparison to existing work under several conditions. Nevertheless, the load balancing 

algorithm in clouds is a subject which needs novel schemes to deal with several modifications. Further, there 

are load balancing schemes, such as Throttle, Leaky bucket, and Round Robin [12] in order to maximize the 

proficiency of cloud computing system.  

Concurrent software with particular structures such as probabilistic behavior and synchronization 

makes the verification intricate. Sahoo and Ray [13] find several kinds of concurrent weaknesses.  

The authors apply a mechanism called Symbolic Path Finder (SPF) which is an improvement of Java Path 
Finder (JPF) for concurrency verification. SPF checks concurrent weaknesses such as race condition, 

deadlock, etc. The proposed SPF also engenders execution tree of the source code for verification case.  

The verification points out the type of defects in the given code. Sergey, et al [14] propose a test tool based 

on Fine-grained Concurrent Separation Logic (FCSL). It is a program-logic for testing software 

characteristics such as threads spawning and higher-order functions. By considering a deterministic 

concurrent program, based on restricted commutation and the state space, FCSL can test a number of 

concurrent software through proofs about libraries in a local thread, reuse and scalability. A framework for 

stationary synthesis of fixed concurrency control of the parallel system is presented in [15]. The algorithm 

familiarizes synchronization that converts the software into a deterministic one by calculating a local thread 

order to assure determinism and preserve the termination. The synthesis algorithm based on two abstraction 

levels, memory and thread abstractions, records the array access. Hawkins, et al [16] explain a method for 

synthesizing concurrent data representations. The compiler takes the input software with concurrency and 
synthesizes a representation of the threads as sets of data structures and an attainment of locks to coordinate 

concurrent level. The results support the deadlock-free operation.  

The focus of the paper is to consider the efficiency of load balancer with Erlang concurrent 

programs using a simulation [17]. In the research, features of the Erlang concurrent traffic is deliberated in 

the Section 3. In order to leverage the Erlang concurrent traffic, the proposed load balancing algorithm is 
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presented then results are validated in terms of the correctness and effectiveness by comparing to results from 

other algorithms. Furthermore, other performance metrices are displayed. 

 

 

2. LITERATURES REVIEW 

Single thread is a simple part of CPU’s utilization. Multithread is a processing pattern that tolerates 

a process to run various code fragments (threads) concurrently within the “environment” of the process.  

A thread like the media player starts its one thread for handling a clip while another thread for uploading a 

new media for a different user. Multithread manages its execution by several independent users, or various 

requests from a single user by avoiding the software duplication. The up-to-date OS such as Microsoft 
Windows manages multitasking environment through concurrent process [18]. In multitasking,  

the processing is the concurrent execution. New task repeats prior to the finishing process of others, without 

awaiting others to complete. The multitasking takes parallel processing simultaneously, rather than opting 

sequential fashion. Multitasking is also a common feature of the up-to-date operating systems. It takes a 

benefit of computer resources; while software waits for I/O cycle to complete, the CPU avails for other 

processes of the same. In a time-sharing scheme, distinct processes run on a single CPU while the only 

processor is offering users by multitasking through multiple threads. 

However, the unstable concurrency results a performance pressure on load balancing challenges. 

Dynamic load balancing algorithm is outlined to lower the response time for virtual machines in cloud 

systems [19]. Not to mention Erlang distributed traffic roots lengthy problems such as load imbalance and 

linearizability. Load imbalance for real-time traffic is characterized and demonstrated in [20]. Furthermore, 
concurrency also creates prolonged scheduling problems in the distributed network [21]. Hence, the study in 

this paper involves with distributed system of unstable Erlang concurrent traffic, especially presents how to 

shape Erlang concurrent tasks then balance the load regarding storage control. The proposed algorithm 

manages the Erlang traffic to fit the capacity of individual computing center. The previous three algorithms 

such as the Least Utilization (LU), the Cyclic Manner (CM) and the Least Load (LL) are benchmarked for 

the validation of the proposed algorithm. Experimental results based on simulation tool are summarized to 

inspect the effectiveness of the proposed algorithm. The remaining of the paper is organized as follows.  

In next section, a review about the characteristic of Erlang traffic is discussed. Section 4 explains how to 

balance the load based on previous algorithm and the proposed algorithm. Section 5 displays the summary of 

simulation results and the subsequent section includes the conclusion. 

 

 

3. ERLANG CONCURRENT TRAFFIC 

The reason for centering on Erlang function instead of others is Erlang's capacity to leverage 

distributed programming and concurrency. Concurrency means programs that can accommodate various 

threads of execution simultaneously. For instance, modern operating systems offer the user to run a 

spreadsheet, a word processor, a mail client, and other jobs all executing at the same time. Each CPU in the 

computing environment is controlling one job (or thread) at a time, but it switches between the threads at rate 

that it provides the impression of executing them all simultaneously. It is practical to design parallel 

processing in an Erlang fashion and to tolerate these jobs to communicate with each other. In Erlang 

distribution, the thread of execution refers to a process. The “process” is called when the threads of execution 

are independent with each other. The key determination is to schedule concurrent tasks to the VMs according 

to flexible time which involves in discovering a correct sequence where concurrent tasks are manipulated 
under program logic constraints [22]. The scheduler of cloud computing is a threat. To keep up with the 

threat the number of effective scheduling algorithms is reviewed. It targets at a scheduler for handing over 

users’ concurrent tasks. The greedy algorithm is presented for the VM data migration from a data center to 

others. VMs within a cluster are set with priority which lessens the migration time. Then it is simulated and 

results point out that the link bandwidth is significant parameter in the migration [23].  

This section defines the experimental feature of the unstable current software. The primary 

application software enters the “split” node for a number of isolated concurrency. The arrival time follows 

Erlang distribution. The computing power includes so called parallel processors. The primary software enters 

the “split” node at no latency, but will be partitioned into a number of specified concurrency. The fragmented 

software from the corresponding primary one are called relatives. All relatives attend parallel processors at 

once after visiting the balancer. It is entirely isolated relatives, excluding the queue’s effect while waiting for 

parallel services. The service time of all fragmented ones follows the exponential distribution. If a relative 
completes the execution, it emerges the “join” node to wait until reuniting for all relatives as shown in  

Figure 1. After all relatives’ reunion, they once fuse into the primary software and stamp the synchronization 

to proceed to another round. The time interval from appearing at the “split” node to the completion of fusion 
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refers to a cycle or the expectancy. If the software (Sm) is fragmented in the “split” into smn relatives then it 

develops the concurrency (smn) throughout the cycle. The concurrency smn alters in each cycle after the fusion. 

The matrix of any software (Sm) contains a row of cyclical concurrency figure is denoted in (1). The Sm 

matrix is a deterministic set. A component sij is set of the unstable concurrency whenever {sij≥0, 1≤i≤m; 

1≤j≤n}. An example of matrix for two software (S1 and S2), where S1=[1 2 1] and S2=[0 4 0] is shown in 

Figure 2. 
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Figure 1. The experimental model Figure 2. Example of unstable software 

 

 

4. CLASSIFICATION OF LOAD BALANCING ALGORITHMS 

The overloading of the computing nodes is not only occurring to data centers, but it also arises to the 

corporate servers which have a substantial number of users. It is thus a gigantic problem for huge 

organization and many corporate. However, there is a solution for such problem which is defined as a fancy 
word “load balancing”. Load balancer is an excellent mechanism applied for improving the total capacity of 

the computing node by allocating the loads across the several servers. In general, databases, software access, 

web traffic, and other things, which exhibit the weighty loads opt the load balancer application to handle the 

users with no disruption. In case of the single server for everything, the computing machine ends up in 

sluggish processing of the users request or becomes an unable response, which is not acceptable in the real-

life process of the e-commerce site. Although, in regular days the servers are adequate to serve all the user 

requests, but sometimes the traffic goes beyond the prediction. It thus results that servers battle to react all 

queries, and users experience delayed loading matter. Finally, the server cannot take any longer user requests 

for the services which affect corporate revenue and sales. Not to mention it strikes the organization reputation 

among the users. In this case a load balancer for web servers will be the only solution. To diminish this sort 

of complications, the load balancing approach on the cloud network is significant. To apply load balancer,  
at least one or more attached to servers can resolve which server it allocates the requests for further process. 

 

4.1.   Least Utilization (LU) 

The load balancer alleviates the user requests in the fashion that it shapes the traffic load. The LU 

algorithm [24] sets a selection criterion for the data center with the largest remaining unused capacity and 

shapes the load into a dispatch of packets in the cloud network. In this algorithm the load balancer allocates 

queries for the data center it scans fully until the data center with the lowest utilization factor is found.  

The LU is also to manage the metered-usage of any centers to avoid going beyond the limit and to prevent an 

extra charge.  

 

4.2.   Cyclic Manner (CM) 

It is the humblest algorithm that makes use of the notion of time slices. Here the time is distributed 
into several slices, each node representing the data centers is specified a particular time interval and the node 
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executes its tasks. The cloud network resources are given to the users based on this time slot. In cyclic 

manner [25], if the time slot is large enough then the algorithm is exactly identical to the first-in-first-out 

discipline. It is the commonly used and fairest algorithm, as it is simple to apply and there is no priority 

concern, only an FIFO scheduling and a time interval for the resources.  

 

4.3.   Least Load (LL) 

The LL algorithm [26] is needed algorithm for the load balancer. The algorithm directs cloud 

network traffic to the data center with the least number of active loads. The load balancer always keeps 

observing the loads. The LL algorithm dispatches all tasks across the cloud network and guarantees that no 

computing nodes are underloaded, overloaded or idle. It is one of the dynamic scheduling algorithms as it 
needs to count the amount of current loads for all computing nodes. The load balancer observes the load of 

each data center, decreases the figure when a task is taken out of the buffer, and increases the number as the 

new task arrives.  

 

4.4.   Proposed Algorithm (PR) 
The proposed algorithm executes the designated unstable software which is spawned into Smn 

concurrent tasks in the “split” node. The load and utilization are monitored to confirm tasks dispatch in each 

and every computation steps. To find the best-fit sub-solution (local) in each step, the proposed algorithm 

looks into the sub-solution results from that step. The decision is then finalized using the narrowest gap 

between the Smn and the sub-solution. This reveals an overall (global) result to accomplish the best-fit 

consequence of a goal. It is a mechanism of picturing a single step ahead. The proposed algorithm obliges 
straightforward rule when it computes all sub-solutions at each fractional step which leads the cost of 

computation to O(mn). The proposed algorithm is summarized in Figure 3. 

 

 

Proposed Algorithm (PR) 
Require: Concurrency matrix  [S] with m rows and n columns 

Ensure:  A=all candidates in each computation step={  
 , …,   

 }, 

  
 =load amount in step y,   

 =utilization factor in step y,  

  
 =specific candidates in step y, Pr=a premium solution where 

Pr(Ay) ≥ 0 and Ay   At 

 
for J=1  to n do 

  
  ← 0 

            for k=1  to  y  /** All candidate seats **/ 

            Ak=w1*  
  + w2*  

  

            /** w1 and w2 are two weighted values used to find out the load 
figure and utilization **/ 

F=arg                 

/** Solution  F corresponding to Uy and By **/ 

end for 
  

for r=1  to  m  
/** Select the concurrent task to fit the computing node **/ 
Δr=F – Srj  
If  Δr  ≥ 0 then  
   

 =arg                           

** Update new best for this step **/ 

end if 

end for 
Return    

   

end for 
 

Figure 3. Proposed algorithm 
 

 

Figure 4 depicts a typical load balancing design used in cloud computing system where the balancer 

stabilizes the load following these classical four phases: a) Collects incoming inquiries (Erlang traffic) from 

multiple users b) The “split” node spawns incoming requests from users into various concurrent tasks and 

forms a queue c) Checks the current load status of the computing nodes (data centers) in the cloud from time 

to time using a daemon software and d) Employs a balancer algorithm to choose proper node.  
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The complicated computing systems route millions of packets in a second. The huge traffic as such must be 

dispatched proficiently among the available computing nodes in order that the nodes can leverage them 

efficiently without any impacts on users. Hence, key advantages of the balancer are helping in managing and 

controlling Erlang traffic, raising the computing node’s utilization, balancing the load based on node 

capacity, improving the availability and lowering over-provision of the network infrastructure. The aim of 

cloud architectures is to provide speedy elasticity then whatever the application is clouds have to meet on-

demand services of the user.  

 
 

 
 

Figure 4. Proposed architecture 

 
 

5. RESULTS AND ANALYSIS 

In cloud environment, concurrent tasks designate the resources on data centers. If a task occupies the 

resource at any specified time, other tasks must wait in queue. Systems as such can be modeled with the 

queuing network. Queuing concept helps shape the time that tasks expend in various queue networks [27]. 

The open queuing network allows software to enter the environment at a “split” and leave at a “join” as 

shown in Figure 5. These “split” and balancer nodes take no service time. Queue discipline for all nodes is 

identical to FIFO basis. Servers 1 to 4 represent data center nodes with equal branching probability.  

The program-dependent service time functions for the data centers 1 and 2 follow the exponential distribution 

with mean of 1, 2, 3, and 4 seconds for four software (S1,S2, S3, and S4) respectively. They detect exponential 

function with mean of 2, 4, 6, and 8 seconds for the data centers 3 and 4. The software arrival rate at the 
“split” expects Erlang-2 function with mean of two in a second. 

Erlang concurrent load from four sources for balancing experiment is specified in (2).  

The simulation [17] runs and shows analytical parameters (such as mean queue length (MQL), throughput 

(THR), mean waiting time in queue (MWT), utilization (UTL), etc.). 
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The simulation results are summarized in Table 1 to 4. The performance metrics of these 4 

algorithms with Erlang concurrent software on the cloud environment: (a) the least utilization, (b) the cyclic 
manner, (c) the least load, and (d) the proposed algorithms are enumerated in these tables. Erlang concurrent 

software is designed to meet the resource capacity on cloud environments and to help achieve the software 

speed-up. However, these LU, CM, and LL algorithms do not balance the load as the range figures of Erlang 

traffic load are 60.7, 72.26, and 58.95 as depicted in Table 1, 2, and 3, respectively. The proposed algorithm 

shown in Table 4 gives the lowest figure of load range (=14.94) and balances the load better than other 

algorithms, particularly in the heterogeneous resources (four data centers). It is because traditional algorithms 

(static scheduler algorithms) have not taken any considerations about the current situation, data center 

capacities, and the queue lengths. It allocates the concurrent jobs to the data center lists one after another in a 

simple manner.  
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Figure 5. Simulation model 

 

 

Table 1. Load Balancing Simulation Results  

based on LU 
Least Utilization (LU) 

Server MQL THR MWT UTL 

1 43.1 0.42 67 1.0 

2 19.9 0.38 32.8 0.97 

3 80.6 0.17 59.8 1.0 

4 76.5 0.21 58.9 1.0 

Load range 60.7    
 

Table 2. Load Balancing Simulation Results  

based on CM 
Cyclic Manner (CM) 

Server MQL THR MWT UTL 

1 10.6 0.4 20.3 0.99 

2 25.42 0.4 40.2 0.99 

3 77 0.19 54.5 1.0 

4 82.86 0.21 64.18 1.0 

Load range 72.26    
 

 

 

Table 3. Load Balancing Simulation Results  

based on LL 
Least Load (LL) 

Server MQL THR MWT UTL 

1 33.05 0.38 52.65 1.0 

2 39 0.33 61.16 1.0 

3 92 0.14 38.45 1.0 

4 63.6 0.2 45.38 1.0 

Load range 58.95    
 

 

 

Table 4. Load Balancing Simulation Results  

based on PR 
Proposed Algorithm (PR) 

Server MQL THR MWT UTL 

1 41.16 0.37 62.1 1.0 

2 45.02 0.26 55.1 0.98 

3 56.1 0.21 65.4 1.0 

4 42.58 0.26 50.13 0.98 

Load range 14.94    
 

 

 

6. CONCLUSION 

In this paper, a new mechanism of balancing load has been approached by using dynamic 

parameters like utilization and present load amount. From the simulation results investigation the proposed 

load balancing algorithm is apparently the most efficient technique than LU, CM, and LL algorithms.  

The three algorithms belong to the cloud environment and are primarily regarded to static balance whereas 

the proposed algorithm is distributed balancing algorithm. As the load range plays important role in cloud 

computing systems, then the proposed algorithm resembles as the finest among the other traditional three 

algorithms. Future research centers on devising the proposed algorithm by tallying additional parameters. 
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