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 Fuzzy differential equations (FDEs) play important roles in modeling 

dynamic systems in science, economics and engineering. The modeling roles 
are important because most problems in nature are indistinct and uncertain. 
Numerical methods are needed to solve FDEs since it is difficult to obtain 
exact solutions. Many approaches have been studied and explored by 
previous researchers to solve FDEs numerically. Most FDEs are solved by 
adapting numerical solutions of ordinary differential equations. In this study, 
we propose the extended Trapezoidal method to solve first order initial value 
problems of FDEs. The computed results are compared to that of Euler and 

Trapezoidal methods in terms of errors in order to test the accuracy and 
validity of the proposed method. The results shown that the extended 
Trapezoidal method is more accurate in terms of absolute error. Since the 
extended Trapezoidal method has shown to be an efficient method to solve 
FDEs, this brings an idea for future researchers to explore and improve the 
existing numerical methods for solving more general FDEs. 
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1. INTRODUCTION  

The concept of a crisp set is fundamental in mathematics. According to [1], a crisp set is a set that 

consists of elements with either full or no membership in the set. The principle notion in set theory can be 

defined as element assigned with value of either 1 or 0 to represent whether it belongs or does not belong to 

the set respectively. For example, the questions, ‘is the woman tall?’, and ‘is the man handsome?’ in crisp set 

can be answered with yes (1) or no (0). Lotfi Zadeh in [2], a mathematician by profession, first introduced the 

idea of fuzzy mathematical framework in 1965 which defined it as a class of objects that involves partial set 

membership. It is called as fuzzy theory, which is a reasonable tool for modeling imprecision and ambiguity 

in mathematical models. The theory appears in many disciplines including medicine, science and 
engineering. It is also very useful in decision making process that involves human perception. According to 

[2], a fuzzy set is a set that allows the membership function to take any value in the interval of Uncertainty 

level of a fuzzy set can be measured by using the level of fuzziness. The measure of fuzziness is represented 

by the function such that where is the set gathering all subsets of the universal set and is the real number 

domain.  

The study of fuzzy differential equations (FDEs) is considered as a new branch of fuzzy 

mathematics. Modeling with FDEs is more relevant and appropriate in representing uncertain systems.  

The researches in FDEs have been rapidly growing over the last few decades. Chang and Zadeh in [3] first 

introduced the concept of fuzzy derivative. It has been used as conditions to solve fuzzy problems. 

Meanwhile, [4] introduced concepts that are related to differential equations. Based on the extension 

principle of Zadeh, the researchers defined the concepts of fuzzy derivative where the differentiation of 
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ordinary functions at a fuzzy point and fuzzy-valued functions at a non-fuzzy point. This approach satisfies 

the generalized Lipschitz condition in which the fuzzy initial-value problems (IVPs) have specific solution. 

Finding solutions for FDEs is very fundamental. Hukuhara differentiability is the most popular 

approach in solving fuzzy valued functions. Kaleva in [5] has studied further on the concepts of fuzzy-set-

valued mappings of a real variable, which the values are normal, convex, upper semi continuous, and support 

fuzzy sets. Most FDEs can be solved using several approaches, either numerically or analytically. However, 

for some FDEs, it is difficult to find analytical solutions. Numerical method is an effective way to solve 

FDEs. According to [6], numerical solution of FDEs is obtained by extending the current classical methods to 

the fuzzy version of differential equations. Finding actual solutions for fuzzy IVPs can be quite difficult and 

at times are almost impossible to obtain. In order to overcome these problems, most researchers employ 
numerical methods for solving the IVPs which can be made as accurately as possible. Conventionally, most 

of the numerical methods for solving fuzzy IVPS are adapted from that of the numerical methods for solving 

ODEs. Researchers such as [7-13] have worked on various one-step methods. Meanwhile, authors in [14-17] 

have worked on family of Adam-Bashforth_Moulton methods. 

Since FDEs are applicable in many real life problems, researchers still need to improve and develop 

numerical methods in order to find better solutions for FDEs. More researchers in [18-25] have also proposed 

various methods to solve FDEs numerically. This study aims to improve the accuracy of the numerical 

solution of FDEs. Trapezoidal method has been seen to be able to solve FDEs but current practice has less 

accuracy with error in approximating the solution for large step-size. We propose extended Trapezoidal 

method to solve first-order IVPs of linear FDEs numerically. The results are expected to be more accurate as 

compared to the existing methods.  
The organization of the paper is as follows. In Section 2, we discuss some fundamental concepts of 

fuzzy mathematics and the development of the proposed method for solving FDEs. Selected numerical 

results are presented and discussed in Section 3. Finally, the conclusions will be presented in Section 4. 

 

 

2. RESEARCH METHOD 

In this section, we introduce some relevant definitions and preliminaries regarding FDEs, as taken 

from [26]. 

Definition 1. Let U  be a nonempty universe and a fuzzy set A  in U  is a function where )(xA  is the degree 

of membership of x  in .A  The element x  will belong more to A  if the value of )(xA  is closer to value 1 

and x  will belong less to A  if )(xA  closer to 0. 

Definition 2. Fuzzy set A  in U  is presented as a set of ordered pairs of a generic element x  and its 

membership value, }.|))(,{( UxxAxA   

Definition 3. Let A  be a fuzzy set in .U  The support of A  is the crisp set of all elements in U  with non-

zero membership in ,A  i.e. 

 

supp }.0)(|{)(  xAUxA  

 

Definition 4. Let A  be a fuzzy set in .U  The core of A  is the crisp set of all elements in U  with 

membership degree in A  equal to 1, i.e. 
 

core }.1)(|{)(  xAUxA  

 

Definition 5. Let A  be a fuzzy set defined in .  A  is called a fuzzy interval if 

a) A  is normal: there exists 0x  such that ;1)( 0 xA  

b) A  is convex: for all yx,  and ,10  λ  it holds that ));(),(min())1(( yAxAyxA    

c) A  is upper semi-continuous: for any ,0 x  it holds that );(lim)(

0

0 xAxA
xx 

  

d) })(|{][ 0 rxAxA   is a compact subset of .  

 

Definition 6. The r-level set 

 

},)(|{][ rsvsv r   ,10  r  

is a closed bounded interval, denoted by 
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)].(),([][ 21 rvrvv r   

 

Let I  be a real interval. A mapping EIy :  is called a fuzzy process, and its r-level set is denoted by 

 

].1,0(,)],;(),;([)]([ 21  rItrtyrtyty r  

 

Definition 7. Fuzzy number is a function ]1,0[: u  with the following properties:
 

a) u  is upper semicontinuous on ,  

b) 0)( xu  outside of some interval ],,[ dc  

c) there are the real numbers a  and b  with ,dbac   such that u  is increasing on ],,[ ac  decreasing 

on ],[ db  and 1)( xu  for each ],,[ bax  

d) u  is fuzzy convex set. 

Definition 8. A triangular fuzzy number is denoted by A  is defined by ),,( γβα  where the membership 

function 
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The graphical representation of triangular fuzzy number is given in Figure 1 with .1)( A  The r-cut of 

),,( γβαA   is given by ].1,0[)],(),([  rβγrγαβrαAr  

 

 

 
 

Figure 1. Triangular fuzzy number 

 

 

Any crisp function can be extended to take on fuzzy set as its argument by applying Zadeh’s 

extension principle, see [2].  

In this paper, we consider first-order FDEs ),,( ytfy   where y  is a fuzzy function of ),(, ytft  

is a fuzzy function of crisp variable t  and fuzzy variable ,y  and y  is Hukuhara or Seikkala fuzzy derivative 

of .y  The fuzzy IVPs of first-order is written as follows: 

 









,)0(

],,0[)),(,()(

0yy

Tttytfty
 (1) 

 

where :f  is a continuous mapping and )(0  Fy  with r-level sets 

 

.10)],;0(),;0([][ 210  rryryy r  

 

When )(tyy   is a fuzzy number, the extension principle of Zadeh leads to the following supremum 

definition: 
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.)},,(:)(sup{))(,(  sτtfsτysytf
 

 

It follows that 

 

,10)],;,(),;,([)],([ 21  rrytfrytfytf r  

 

Where 

 

,10)]},(),([:),(min{);,( 211  rryrywwtfrytf  

 

.10)]},(),([:),(max{);,( 212  rryrywwtfrytf  

 

In this study, the extended Trapezoidal method is proposed by improving Trapezoidal method and 

extending one-step further to give more accurate approximate results. The proposed method will be tested on 

some IVPs to check the accuracy and the validity of the method. Referring to [27], Trapezoidal method for 

the initial-value problem of ODEs such as 

 









,)(

,)),(,()(

0yay

btatytfty
 (2) 

 

is given by 

 

],ˆ[
2

11   nnnn ff
h

yy  (3) 

 

where ),( nnn ytff   and ).ˆ,(ˆˆ
111   nnn ytff  The notation ny  is the approximate to ),( nty  i.e 

).( nn tyy   Furthermore, the notation 1ˆ ny  refers to the predictor for .1ny  The stepsize Nabh /)( 

where N  is an integer. The extended Trapezoidal method for the solution (2) is given by 

 

],ˆˆ[ 221101   nnnnn fαfαfαhyy  (4) 

 

Where 

 

)ˆ,(ˆˆ
222   nnn ytff  

 

which 2ˆ ny  is a predictor given by 

 

].ˆ[ˆˆ 1321102   nnnnn fβfβhyβyβy
 (5) 

 

where 4,2,4,5 3210  ββββ  and hence 

 

].ˆ42[ˆ45ˆ 112   nnnnn ffhyyy  

 

Solving (4), we have 
12

1
,

3

2
,

12

5
210  ααα  and hence 

 

]ˆˆ85[
12

211   nnnnn fff
h

yy  

 

form the basis of extended Trapezoidal method. 

Now, consider the fuzzy initial-value problem (1),  
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







.)0(

],,0[)),(,()(

0yy

Tttytfty
 

 

Let the exact solution )];(),;([)]([ 12111 rtYrtYtY nnrn    is approximated by some  

 

)],;(),;([)]([ 12111 rtyrtyty nnrn    

 

Where 

 

))];(ˆ,(ˆ));(ˆ,(ˆ8));(,(5[
12

);();( 2121111111 rtytfrtytfrtytf
h

rtyrty nnnnnnnn    

 

And 
 

))];(ˆ,(ˆ));(ˆ,(ˆ8));(,(5[
12

);();( 2221212212 rtytfrtytfrtytf
h

rtyrty nnnnnnnn    

 

as a corrector method. We refer to );(ˆ 1
)1(

1 rty n
i




 as the i-th iteration and the predictors are obtained 

recursively as follows, 

 

)),;(,();();(ˆ 111
)0(

1 rtythfrtyrty nnnn   

 

))],;(ˆ,());(,([
2

);();(ˆ 1
)0(

11111
)1(

1 rtytfrtytf
h

rtyrty nnnnnn    

 

))],;(ˆ,());(,([
2

);();(ˆ 1
)1(

11111
)2(

1 rtytfrtytf
h

rtyrty nnnnnn    

 

))].;(ˆ,());(,([
2

);();(ˆ 1
)2(

11111
)3(

1 rtytfrtytf
h

rtyrty nnnnnn    

 

After performing three iterations, and since no further changes occur in the value of ),;(ˆ 1
)3(

1 rty n  we take 

),;(ˆ 1
)3(

1 rty n  to be ).;(ˆ 11 rty n  Therefore, 

 

))].;(ˆ,(ˆ4));(,(2[);(ˆ4);(5);(ˆ 111111121 rtytfrtytfhrtyrtyrty nnnnnnn    

 

Similarly,
 

)),;(,();();(ˆ 221
)0(

2 rtythfrtyrty nnnn   

 

))],;(ˆ,());(,([
2

);();(ˆ 1
)0(

21221
)1(

2 rtytfrtytf
h

rtyrty nnnnnn  

 

))],;(ˆ,());(,([
2

);();(ˆ 1
)1(

21221
)2(

2 rtytfrtytf
h

rtyrty nnnnnn    

 

))].;(ˆ,());(,([
2

);();(ˆ 1
)2(

21221
)3(

2 rtytfrtytf
h

rtyrty nnnnnn    

 

For the same reasons as the above, after three iterations, we let ).;(ˆ);(ˆ 1
)3(

212 rtyrty nn    Thus, 
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))].;(ˆ,(ˆ4));(,(2[);(ˆ4);(5);(ˆ 111111121 rtytfrtytfhrtyrtyrty nnnnnnn  
 

 

Moreover, the exact and approximate solutions at Nntn  0,1  are denoted by 

)];();;([)]([ 12111 rtYrtYtY nnrn    and )];(),;([)]([ 12111 rtyrtyty nnrn    respectively. Figure 2 

represents the algorithm for the implementation of extended trapezoidal method for solving fuzzy IVPs. 

 
 

 
 

Figure 2. Algorithm for solving fuzzy IVPs 

 

 

3. RESULTS AND DISCUSSION 

In testing the validity and accuracy of the implemented method, various first order IVPs are solved 

using the proposed method with various values of stepsizes. In this section, we illustrate numerical results for 

one test problem using two different stepsizes. The results of extended Trapezoidal method will be compared 
to the existing Euler and Trapezoidal methods. For more numerical results on various test problems, kindly 

refer to [28]. 

Test Problem 1 

Consider the following fuzzy IVPs taken from [11]: 

 

),125.0125.1,25.075.0()0(

),()(

rry

tyty




          

.10

],1,0[





r

t
 

 

Exact solution at 1t  is given by 

 

],)125.0125.1(,)25.075.0[();1( ererrY 
 

.10  r  

 

The numerical results in terms of absolute errors for test Problem 1 by using Euler, Trapezoidal and 

extended Trapezoidal method with step-sizes 1.0h  and 0001.0h  are presented in Table 1 and Table 2 

respectively. The exact solutions and approximate solutions are compared and illustrated in Figure 3. 

The numerical results in terms of absolute errors for test Problem 1 by using Euler, Trapezoidal and 

extended Trapezoidal method with step-sizes and are presented in Table 1 and Table 2 respectively. The 

exact solutions and approximate solutions are compared and illustrated in Figure 3. 

From the numerical results, it is clearly seen that the error becomes smaller as the stepsize decreases. 

For each step-size, the error in extended Trapezoidal method is smaller compared to the errors in Euler 

method and Trapezoidal method. Thus, it is concluded that the proposed method gives better accuracy when 

solving Test Problem 1. The exact and approximate solutions for Test Problem 1 at with and compared and 
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plotted in Figure 3. In the figure, EM means Euler method, TM is Trapezoidal method, ETM refers to 

extended Trapezoidal method and Exact means exact solution at From Figure 3, it is clearly seen that the 

errors for extended Trapezoidal method are very small as compared to the existing method. As stepsize 

decreases, other tested methods also obtain comparable results in terms of accuracy. Thus, it can be 

concluded that extended Trapezoidal method is very suitable in solving FDEs numerically. 

 

 

Table 1. Absolute Error of Test Problem 1 for 
 

r 

Euler Method Trapezoidal Method Extended Trapezoidal Method 

);(1 rty N  );(2 rty N  );(1 rty N  );(2 rty N  );(1 rty N  );(2 rty N  

0.1 9.65180e-02 1.38550e-01 3.25576e-03 4.67359e-03 8.49591e-05 1.21957e-04 

0.2 9.96315e-02 1.36993e-01 3.36079e-03 4.62108e-03 8.76997e-05 1.20587e-04 

0.3 1.02745e-01 1.35437e-01 3.46581e-03 4.56857e-03 9.04403e-05 1.19217e-04 

0.4 1.05858e-01 1.33880e-01 3.57083e-03 4.51606e-03 9.31809e-05 1.17846e-04 

0.5 1.08972e-01 1.32323e-01 3.67586e-03 4.46354e-03 9.59216e-05 1.16476e-04 

0.6 1.12085e-01 1.30766e-01 3.78088e-03 4.41103e-03 9.86622e-05 1.15106e-04 

0.7 1.15199e-01 1.29210e-01 3.88591e-03 4.35852e-03 1.01403e-04 1.13736e-04 

0.8 1.18312e-01 1.27653e-01 3.99093e-03 4.30601e-03 1.04143e-04 1.12365e-04 

0.9 1.21426e-01 1.26096e-01 4.09596e-03 4.25349e-03 1.06884e-04 1.10995e-04 

1.0 1.24539e-01 1.24539e-01 4.20098e-03 4.20098e-03 1.09625e-04 1.09625e-04 

Note: 8.49591e-05 means 8.49591x10-5 

 

 

Table 2. Absolute Error of Problem 1 for 0001.0h  
 

r 

Euler Method Trapezoidal Method Extended Trapezoidal Method 

);(1 rty N  );(2 rty N  );(1 rty N  );(2 rty N  );(1 rty N  );(2 rty N  

0.1 1.05324e-04 1.51191e-04 3.51086e-09 5.03980e-09 9.81437e-14 1.23013e-13 

0.2 1.08721e-04 1.49492e-04 3.62411e-09 4.98316e-09 8.74856e-14 9.54792e-14 

0.3 1.12119e-04 1.47793e-04 3.73736e-09 4.92651e-09 1.06581e-13 1.24345e-13 

0.4 1.15516e-04 1.46094e-04 3.85061e-09 4.86987e-09 9.76996e-14 1.27454e-13 

0.5 1.18914e-04 1.44395e-04 3.96385e-09 4.81324e-09 7.77156e-14 1.27010e-13 

0.6 1.22311e-04 1.42697e-04 4.07713e-09 4.75664e-09 1.13687e-13 1.07470e-13 

0.7 1.25709e-04 1.40998e-04 4.19038e-09 4.69998e-09 1.00364e-13 1.14131e-13 

0.8 1.29107e-04 1.39299e-04 4.30362e-09 4.64340e-09 1.33671e-13 1.23457e-13 

0.9 1.32504e-04 1.37600e-04 4.41689e-09 4.58676e-09 8.03801e-14 1.31894e-13 

1.0 1.35902e-04 1.35902e-04 4.53016e-09 4.53016e-09 1.35447e-13 1.35447e-13 

Note: 8.49591e-05 means 8.49591x10-5 

 

 

 
(a) Approximate and Exact Solutions of Test Problem 1 

with 1.0h  

 
(b) Approximate and Exact Solutions of Test Problem 1 

with 0001.0h  

 

Figure 3. Approximate and Exact Solutions of Test Problem 1 with 1.0h  and 0001.0h  
 
 

4. CONCLUSION 

We have presented numerical computation for the solutions of fuzzy IVPs. The numerical 

computation focuses on the implementation of extended Trapezoidal method for solving FDEs. Numerical 
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results for extended Trapezoidal methods are compared with the existing Euler and Trapezoidal methods. 

The proposed extended trapezoidal method performs very well when compared with the existing method of 

the same order. The errors, computed when different stepsizes being employed, indicate that the numerical 

solutions approach exact solutions, as the stepsizes are getting smaller. We conclude that extended 

Trapezoidal method achieves the desired accuracy and therefore, the method is suitable for solving FDEs. 
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