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 This paper presents a simulation study on Simultaneous Localization and 
Mapping (SLAM) using point cloud data derived from the Light Detection 
and Ranging (LiDAR) technology. Methods like simulation are useful to 

simplify the process of learning algorithms, particularly when collecting and 
annotating large volumes of real data are both impractical and expensive.  
In this study, a map of a given environment was constructed using the 
Robotic Operating System (ROS) platform with Gazebo Simulator (GS).  
The paper begins by presenting the most currently popular algorithms that 
are widely used in SLAM namely the Extended Kalman Filter, Graph SLAM 
and Fast SLAM. The simulation of the Robot Operating System in 
MATLAB is also presented. The study performed the simulations by using 

standard SLAM with Turtlebot and Husky robots. Husky robot was further 
compared with the Adaptive Monte Carlo Localization (ACML) algorithm. 
The results showed that Hector SLAM could achieve the goal faster than 
ACML algorithm in a pre-defined map. Further studies in this field with 
other SLAM algorithms would certainly be beneficial to many parties due to 
the overwhelming demands of robotic applications. 
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1. INTRODUCTION  

The last three decades have evidenced the growth of robotic applications in fields such as 

autonomous and unmanned aerial vehicles. This development is accompanied by an increasing challenge of 

developing the algorithms for the robots especially in dealing with real scenarios that are unsafe, expensive, 

or impractical in terms of data collection. Methods like simulation are useful to simplify the process of 

learning algorithms particularly when collecting and annotating large volumes of real data are both 

impractical and expensive [1]. In a simulated environment, the safety of systems and other hardware are 

generally not a concern. The simulation world can be procedurally constructed to specifications, allowing 

tests to be conducted especially under impractical and expensive conditions. Other past studies on simulation 
method can be found in [2-3].  

Dealing with technology such as Light Detection and Ranging (LiDAR) deeply demands the 

application of the simulation method due to its sensitivity and cost. LiDAR has become one of the key 

technologies for remote sensing that is able to sample the entire environment and capture extremely accurate 

objects very quickly [4-5]. LiDAR is capable to collect more than one million points per second (pps) of high 

quality three-dimensional (3D) urban data [6]. The sensor is especially useful for accurate 3D of other man-

made structures like road details, urban furniture or vegetation [7]. The most well-known manufacturer of 
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LiDAR is Velodyne [8-9]. The Velodyne High Definition LiDAR (HDL) unit provides a 360-degree azimuth 

field of view and a 26.5 degree elevation field of view, up to 15 Hz frame refresh rate, and rich point cloud 

populated at a rate of one million points per second [6]. LiDAR is also capable of recording every single data 

that bounces back to it every second. Undoubtedly, it has become a common fixture on autonomous vehicle 

run by companies like General Motors, Ford and Alphabet’s Waymo [10]. 

Due to its robustness, this technology has encouraged many researchers to develop algorithms for 

scan matching, object detection and mapping [1, 5-7]. Since LiDAR applied 3D point cloud data, a good 

algorithm is needed to fully utilize all the data that has been produced. The algorithms must deal with the 
noise and large scale of data collected by LiDAR, thus developing the complex application would be greatly 

beneficial under simulation method. The objectives of this paper are to provide the simulation setup process, 

and to experiment a few standard SLAM algorithms for mapping and localization using Robotic Operating 

System (ROS). The remainder of this paper is organized as follows: Section 2 explains the Simultaneous 

Localization and Mapping (SLAM) and presents the commonly used algorithm in SLAM. Section 3 presents 

the simulation of ROS while Section 4 discusses the results of the simulation based on two robots.  

Finally, Section 5 concludes the paper. 

 

 

2. SIMULTANEOUS LOCALIZATION AND MAPPING  

Simultaneous Localization and Mapping (SLAM) was first coined in 1995 and was presented at the 

7th International Symposium on Robotics Research [10]. SLAM is defined as a process by which a robot can 
map out an environment and deduce its location both at the same time. It refers to the simultaneous 

estimation of the state of a robot equipped with on-board sensors, and the construction of a model or the map 

of the environment that the sensors are perceiving [12-13]. The sensors such as LiDAR, camera, odometer, 

and inertial sensor will collect the data of its surroundings as it moves and placed on the robot. Other 

properties of the robot such as velocity, sensor biases, and calibration parameters would also influence the 

pose or the position and the orientation of the robot. The map, on the other hand, is a representation of 

aspects of interest that includes position of landmarks and obstacles describing the environment in which the 

robot operates, while localization refers to the position of the robot given a map [12]. Although SLAM has 

the capability to learn the map and location simultaneously, its implementation is challenging due to other 

problems like loop-closure and data association. Furthermore, SLAM is like a chicken-or-egg analogy in 

which we need either localization or mapping or both to do one of the processes. Nevertheless, SLAM is 
useful in a huge range of applications where absolute position and precise map information are unobtainable 

[14-15]. The following sub-sections present the most commonly SLAM algorithms in the field of 

autonomous vehicle. 

 

2.1.   Extended Kalman Filter 

The Extended Kalman Filter (EKF) is the derivation of Kalman Filter algorithm in which 

improvements have been made in Kalman Filter algorithm to handle non-linear problems. It is a well-known 

multi-sensor fusion method that integrates the information from multiple sensors for more accurate and 

credible information [15]. The method is a mathematical model which utilizes optimization for estimation 

[11]. Thus, the SLAM implementation with EKF is considerably difficult due to the approximation of real-

time stochastic type system, and sensor noise known as Gaussian. This improper noise may cause instability 
to the entire system [16]. The implementation of EKF with a Laser Range Finder (LRF), also known as Laser 

Scanner Sensor (LSS) was carried out in which the accuracy of SLAM was improved by incorporating the 

derived output matrices through least-square techniques [17]. This approach was able to increase the 

mapping accuracy and scalability [11]. Moreover, the advantage of EKF is that it assumes that the process 

models and observations are locally linear and can therefore be linearized [18]. In addition, the advantages 

are straightforward application, large body of research to derive from, works reasonably well for a small 

number of features and distinct landmarks [19]. However, it also has certain disadvantages, which are 

quadratic complexities with a number of features, no guarantee of convergence in non-linear case, makes 

hard decisions about data associations, cannot correct for erroneous data associations, and need sufficiently 

distinct landmarks [19]. The widespread use of EKF are for filtering noisy signals, generating non-observable 

states (estimating velocity), and predicting future states fast.  

 

2.2.   Graph-SLAM 

One intuitive way of formulating SLAM is to use a graph whose nodes correspond to the poses of 

the robot at different points in time, and whose edges represent constraints between the poses [20]. The key 

idea of Graph-SLAM is building a graph, which contains all the places the sensor has previously visited and 

connects them. It uses a graph to represent the problem and every node in the graph corresponds to a pose of 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Simulation of simultaneous localization and mapping using point cloud data(Shuzlina Abdul-Rahman) 

943 

the sensor during mapping. Every edge between the two nodes corresponds to the spatial constraints between 

them. The goal of this algorithm is to find nodes configuration that minimizes the error introduced by the 

constraints. Graph-SLAM has shown its advantages in large scale mapping, since a graph can be easily 

scarified to reduce redundant information and increase the accuracy of the estimation [21]. It also increases 

the quality of the map over time due to error convergence by separating back and front-ends. It also helps to 

complete path and gets optimized when an error is found [22]. The main disadvantages of graph-based 

SLAM is that it requires high memory computations as it incorporates all the pose estimates during the 

calculation process unlike EKF and other filtering methods. Graph-SLAM is hard to implement and difficult 

in the optimization of parameters [21]. In addition, the error is converged by iteration, which makes the 

algorithm less deterministic [22]. 
 

2.3.   Fast SLAM 

FastSLAM splits the SLAM problem into a robot localization problem, and a collection of landmark 

estimation problems that are conditioned on the robot pose estimate. It uses a modified particle filter for 

estimating the posterior over robot paths. According to a study by [23], FastSLAM allows autonomous 

mobile robots an ability to learn a consistent model of its environment, which is its prerequisite. FastSLAM 

is efficient to be applied to environments mapping because it can process far larger data than could be 

handled by the EKF [24]. This algorithm is capable of building maps with orders of magnitude with more 

landmarks than Kalman Filter. It can also handle a small number of particles which works well regardless of 

the number of landmarks under certain conditions. In addition, it is able to recover from false data association 

and can pursue multiple data associations simultaneously [25]. Long term process is an inconsistent 
stochastic filter but, as a heuristic estimator, it can be both tractable and highly accurate, while in short-term 

process it is able to produce consistent results given enough particles [26]. The advantages of the fastSLAM 

is that it does not consider the measurement acquired at time; instead, the measurement is through resampling 

[27]. Its current form cannot produce consistent estimates in the long-term and may produce quite accurate 

results but the estimate of its accuracy soon becomes optimistic. Many researchers underestimate fastSLAM 

due to its uncertainties because of the higher landmarks, or precise sensors or more frequent observations but 

will improve accuracy and also speed up particle depletion [26]. Nowadays, robot simulators have robust 

physics engines, high-quality graphics, and convenient interfaces, affording researchers to substitute physical 

systems with their simulation models in order to pre-estimate the performance of theoretical findings before 

applying them to real robots. 

 

 

3. SIMULATION IN ROBOTIC OPERATING SYSTEM 

Robotic Operating System (ROS) is a collection of software frameworks that support code reuse for 

robotics research and development. It was first developed by the Stanford AI Laboratory in 2007 for 

developing robotic applications and is currently maintained by The Open Source Robotics Foundation 

(OSRF) [28]. As mentioned by Quigley et al. [29], the ROS gives a structured communications layer above 

the host operating systems of a heterogeneous computer cluster unlike the traditional sense of process 

management and scheduling in operating systems. Since the main goal of ROS is to support the code reuse in 

robotics applications, it provides a built-in package system similar to any other services such as hardware 

abstraction, low-level device control, implementation of commonly-used functionality, message-passing 

between processes, and package management [28]. Another good feature of ROS is that it does not have to be 

on the same system or architecture, and this promotes high flexibility and adaptability to user needs [30].  
The paper is not intended to provide details about ROS, thus more details about ROS framework can be 

referred in Quigley et al. [31]. 

The list of softwares needed for this simulation includes Windows operating system, Ubuntu 

operating system, MATLAB, Robotic Operating System and the Gazebo Simulator. We need to have two 

different operating systems (OS) because the process will occur in two different environments. This is 

because the workstation with Windows OS will act as the host while the workstation with Linux OS will act 

as the simulator. The process will also proceed in the same workstation if the user has limitations with the 

number of computers. Setup of the simulation is by installing a virtual machine in the host workstation.  

Then, Ubuntu is installed in the Virtual machine. However, the performance is lesser since the workstation 

needs to work on two big tasks at the same time. The memory of the workstation will be fully loaded and 

slows the time for processing. In this setup, we used Windows 7 64 bit as the host, Ubuntu 18.04 LTS as the 

simulator, MATLAB R2018a and the Robot Operating System (ROS) with Gazebo simulator. We employed 
MATLAB R2018a [32] since it has ROS toolbox that will ease the process of controlling the robot in the 

gazebo. The gazebo simulator will run the virtual turtlebot as the robot. The virtual turtlebot is the same with 

the real one. TurtleBot is a low-cost, personal robot kit with open-source software. There are two types of 
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TurtleBots, real and virtual Turtlebots. The virtual TurtleBot can be used in the ROS and is suitable for 

mapping since it has LiDAR features. 

 

3.1.   Gazebo and Simulated TurtleBot Setup 

This section presents the process of setting up the Gazebo simulator engine. It is a simulator that 

enables the user to perform the testing and experiment of physical scenarios. For this simulation, MATLAB 

is connected to Gazebo through the ROS interface. The simulator environment setup is performed in three 

steps as been described in [32]. The first step is to install a complete Linux OS and ROS with Gazebo in the 
other workstation or install the Virtual machine in the same workstation with the host. The second step is to 

download a virtual machine image that has been installed with Gazebo and ROS. This virtual machine is 

based on Ubuntu® Linux® OS which is pre-configured to ease the ROS examples in Robotics System 

Toolbox™. Once the installation process is completed, three Gazebo icons are created, namely "Gazebo 

Empty", "Gazebo Playground" and "Gazebo TurtleBot World". The first two Gazebo icons are used in the 

Gazebo examples while the last one is used in the TurtleBot® examples. For the ROS website, the suitable 

packages for TurtleBot are downloaded and the instruction in the website can be followed to get the Turtlebot 

running. The environment variables can be tested by pinging back and forth between the host and the Gazebo 

computer. The third step is to make/establish a connection between the host environments and the simulator 

environment. This step can be started by opening a new terminal in the Ubuntu virtual machine or the stand 

alone OS. The networking information for the virtual machine is shown by using ipconfig. As can be seen in 

Figure 1, under Under eth0, the inet addr displays the IP address for the virtual machine. The next step is to 
set up the nework and this process requires two ROS environment variables: ROS_MASTER_URI and 

ROS_HOSTNAME. Once this process is performed, the environment variables are checked using echo 

$ENV_VAR (the ENV_VAR can be replaced with the appropriate environment) while command of Close 

and Reopen is used to control the terminal for the effect to be seen. Figure 2 illustrates the correct 

environment variables assignments by using the fake IP addresses. On the host computer setup, the IP 

address of host computer on the network has to be identified. The command “ipconfig” can be used to 

display the network configuration for windows OS.  

 

 

 
 

Figure 1. IP address for Ubuntu terminal 

 

 
 

 
 

Figure 2. Environment variable 

 

 

3.2.   TurtleBot with Teleoperation Control 
This section discusses the mechanism in controlling the TurtleBot using the keyboard as mentioned 

in [32]. The instructions are sent from the host environment to the simulator environment. These instructions 

are coded in MATLAB and are sent to the Gazebo simulator through ROS interface. The following 

instructions describe how to set up the object and how to start the keyboard control. The process begins by 

downloading a hardware support package for TurtleBot. This package allows users to collect sensor data and 

send control commands without explicitly calling ROS commands. It also allows users to communicate 

transparently with a simulated robot in Gazebo or with a physical TurtleBot. To install this package,  

the following command which can be found at the MATLAB Home tab by selecting "TurtleBot-Based 

Robots: “open Add-Ons > Get Hardware Support Packages”. An alternative approach is by using the 

roboticsAddons command. Once the installation is completed, the connection to the TurtleBot can be 

established by initializing ROS. At this stage, the TurtleBot can be connected with ROS by replacing the 
sample IP address (192.168.1.1) with the IP address of the TurtleBot. The TurtleBot should run either in 
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simulation through Gazebo and a Simulated TurtleBot or get started with a real TurtleBot for the startup 

procedure. As stated in [32], Gazebo TurtleBot World would be a good choice under simulation. Then, the 

odometry and laser scan topics are subscribed in order to ensure the messages are received accordingly.  

The next process is to create a publisher for controlling robot velocity. In controlling the robot,  

the exampleHelperTurtleBotKeyboardControl function was activated that permits the user to control the 

TurtleBot using the keyboard. Figure 3 shows a sample of a few command windows, and the Gazebo world 

after some keyboard teleoperation by the user. The TurtleBot needs to be moved slowly to produce a good 

mapping result. This is because the plotting process require some/sufficient time, thus if the movement of the 

TurtleBot is too fast this would result in a messy obstacle plotting due to imprecision in the odometry topic 

that runs at high speeds. Figure 4 shows an example of a messy world plot. Once the simulation is done, the 
bot from the Gazebo is disconnected to avoid any crash on the system. This can be done by pressing the “q” 

function, while the publishers and subscribers on the host can be cleared using the command “clear” before 

the ROS is shutdown. It is recommended to use “rosshutdown” once the simulation is completed by shutting 

down the global node and to disconnect it from the TurtleBot. 

 

 
 
 

 
 

Figure 3. Samples of the command window 

 
 

Figure 4. Samples of the messy world plot 

 

 

4. RESULTS 

In this section, simulation results with TurtleBot and Husky Robot are presented. Simulation 

with Husky robot utilizes the Hector SLAM and AMCL algorithms to compare time taken in reaching 

the goal. 
 

4.1.   Simulation Results with TurtleBot 

In simulation with TurtleBot, scripts are done in MATLAB and the simulation is done on the 

Gazebo in ROS. The simulation using a standard SLAM and the algorithm is provided by the ROS toolbox in 

the MATLAB. The movement of the bot is controlled by the keyboard. Figure 5 shows the results before the 

TurtleBot moves and Figure 6 shows the results after the TurtleBot moves forward after pressing “i”. We can 

clearly see the graph on the right hand side of the image. As the bot moves, it maps the environment. In this 

study, the simulation uses standard SLAM only. The virtual TurtleBot, ROS and MATLAB are very useful 

and can be used in simulating and testing the algorithms.  

 

4.2.   Simulation Results with Husky Robot 
This section presents the simulation result of Husky robot with Hector SLAM and AMCL 

algorithms. Hector SLAM requires low computational resources as it is available as open source based on 

ROS. It relies on scan matching and does not require loop closure as it is sufficiently accurate [33]. The scan 

matching uses a Gauss-Newton approach as it solves non-linear least squares problems based on occupancy 

grid maps [34]. This approach optimizes the alignment of beam endpoints with the current map [35]. Hector 

SLAM is a part of the linear square optimization-based SLAM [36]. Adaptive Monte Carlo Localization 

(AMCL) use resampling scheme that is both beneficial to a line-based sensor model, and which minimizes 

the error between real and sampled particle using Kullback Leibler Distance (KLD) [37]. Figures 7 and 8 

show the localization of the mobile robot while creating the map of the environment in ROS environment.  

As one can see, the mobile robot could locate itself while creating the map of the unknown environment. 
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Table 1 presents the results of the five experiments between Hector SLAM and AMCL algorithms 

with different pairs of points. As can be seen, the Hector SLAM consistently requires less time in reaching 

the goal for all the points. In general, it took approximately 122.53 seconds on average to reach the goal 

while AMCL algorithm took 199.94 seconds. This is probably because Hector SLAM does not require loop 

closure and only depends on scan matching as compared to AMCL algorithm.  

 

 

Table 1. Modelling Time between Hector SLAM and AMCL Algorithm 
  Time Taken to Reach Goal 

Experiments Points Hector SLAM AMCL algorithm 

1 A to B 25.32 seconds 32.49 seconds 

2 C to D 24.18 seconds 43.56 seconds 

3 E to F 20.86 seconds 39.45 seconds 

4 G to H 31.73 seconds 37.66 seconds 

5 I to J 20.44 seconds 46.78 seconds 

 Total 122.53 seconds 199.94 seconds 

 

 

 
 

Figure 5. Result before the TurtleBot moves 

 

 

 
 

Figure 6. Result after the TurtleBot moves 
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Figure 7. Experiment 1 with Hector SLAM 

from point A to B 

 
 

Figure 8. Experiment 2 with Hector SLAM 

from point C to D 

 

 

5. CONCLUSIONS 

This paper demonstrated the simulation study of SLAM using point cloud data derived from LiDAR 
technology. The map of a given environment was constructed with Gazebo Simulator in ROS. The ROS 

simulation setup in MATLAB was described as a guidance to other interested researchers. The study also 

presented the simulation experiments with Turtlebot which map the movement of the bot and the 

environment. Further, simulation experiment with Husky robot utilizes the Hector SLAM and AMCL 

algorithms are presented to compare time taken in reaching the goal. Results showed that Husky with Hector 

SLAM take less duration to complete the given task. Further studies in this field with other SLAM algorithms 

would certainly beneficial to many parties due to the demands of robotic application. 
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