
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 18, No. 1, April 2020, pp. 1571~1577

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v18.i1.pp1571-1577  1571

Journal homepage: http://ijeecs.iaescore.com

Improving graph-based methods for computing qualitative

properties of markov decision processes

Mohammadsadegh Mohagheghi
1
, Khayyam Salehi

2

1Department of Computer Science, Vali-e-Asr University of Rafsanjan, Iran
2Department of Computer Science, University of Tabriz, Iran

Article Info ABSTRACT

Article history:

Received Aug 1, 2019

Revised Sep 21, 2019

Accepted Oct 11, 2019

 Probabilistic model checking is a formal verification method, which is used
to guarantee the correctness of the computer systems with stochastic

behaviors. Reachability probabilities are the main class of properties that are
proposed in probabilistic model checking. Some graph-based pre-
computation can determine those states for which the reachability probability
is exactly zero or one. Iterative numerical methods are used to compute the
reachability probabilities for the remaining states. In this paper, we focus on
the graph-based pre-computations and propose a heuristic to improve the
performance of these pre-computations. The proposed heuristic approximates
the set of states that are computed in the standard pre-computation methods.
The experiments show that the proposed heuristic can compute a main part of

the expected states, while reduces the running time by several orders of
magnitude.

Keywords:

Graph-based pre-computation

Markov decision processes

Probabilistic model checking

Qualitative reachability
probabilities

Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Mohammadsadegh Mohagheghi,

Department of Computer science,

Vali-e-Asr University of Rafsanjan, Iran.

Email: mohagheghi@vru.ac.ir

1. INTRODUCTION

Formal methods are mathematical-based approaches that are used in software engineering and

hardware design. The goal of these methods is to guarantee the correctness of the qualitative or quantitative

properties of the desired systems [1, 2]. Model checking is an automated formal method that uses graph-

based structures for modelling the underlying systems and logic-based propositions to specify the system
properties [1, 3]. A model checker is a software tool that decides the satisfiability of the specified properties

against the proposed model [1, 4].

Because of the stochastic behaviors of many computer systems, probabilistic structures are more

useful for modeling such systems [4-6]. Markov chains and Markov decision processes (MDPs) are well-

known structures for modelling stochastic systems and are widely used in artificial intelligence, economy,

operations research and software engineering [7-9]. Several examples of the stochastic systems and their

modelling are available in [3, 4, 7]. For this class of systems, probabilistic model checking is a good

technique to verify the quantitative or qualitative properties of the systems. PRSIM [10], STORM [11] and

IscasMC [12] are state of the art probabilistic model checkers.

The main classes of properties that are used in probabilistic model checking contain reachability

probabilities, i.e. the maximal or minimal probability of reaching a set of goal states in the MDP model.
A standard approach for computing reachability probabilities is to use iterative graph-based and numerical

methods [13]. Graph-based methods (also called pre-computation) compute the set of states for which the

probability of reaching a goal state is exactly zero or one [4]. An iterative numerical method starts from an

initial vector of values and iteratively updates the values until satisfying the stopping criterion [1].

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 1, April 2020 : 1571 - 1577

1572

The main challenge of model checking in all variants is the state explosion problem, i.e. the number

of the states of the model grows exponentially in the number of its components. Several techniques are

proposed to cope with this problem [1, 14-17]. In the case of probabilistic model checking the running time

of iterative methods is the main problem that limits the scalability of the method [3, 18, 19]. Several

techniques have been proposed to improve the performance of the standard probabilistic model checking

methods. These techniques are used to reduce the running time of the graph-based [20, 21] or numerical

computations [22-24] or both methods [16, 25]. Although the proposed methods show promising results in

the running time of probabilistic model checking, experimental results show more improvement is needed for
iterative graph-based of numerical methods [26]. In this paper, we consider the running time of graph-based

methods as an important problem in probabilistic model checking and propose a new approach to reduce this

running time.

The forward and backward approaches are two alternatives for graph-based computations in the

probabilistic model checking of MDPs [1]. The forward approach is normally faster than the backward

approach, but its main drawback is the memory overhead, which limits its scalability to relatively small

models [1, 20]. As a result, most prominent model checkers (such as PRISM and IscasMC) use the forward

approach for the pre-computations to avoid memory overhead, which is essential to overcome the state

explosion problem [15, 27]. The motivation of this paper is to improve the performance of the graph-based

pre-computation methods. To avoid memory overhead, we focus on the forward approach for pre-

computation. As the main contribution of the paper, we propose a heuristic to reduce the running time of pre-

computation in the forward approach. This heuristic reduces the number of iterations by approximating the
set of expected states in an improved order. Although this heuristic does not guarantee to detect all states that

the standard pre-computation algorithms do, the experiments show that it can reduce the overall run-time in

most cases and improves the performance of probabilistic model checking of MDPs.

2. FORMAL PROBLEM DEFINATION AND BACKGROUND

In this section, we propose a brief review of the main concepts of probabilistic model checking that

are used in this paper. More details about probabilistic model checking and their methods are available

in [1, 3, 4].

2.1. Probabilistic Models and Reachability Probabilities
Markov decision processes are used in probabilistic model checking to model both nondeterministic

and probabilistic aspects of a system [7].

Definition 1. (Markov Decision Process) A Markov Decision Process (MDP) is defined as a tuple

 where is a finite set of states, is the initial state, is a finite set of actions.

For every state the set of enabled actions of is denoted by . We use as the size of this

set and is a probabilistic transition function and is defined as a subset of . For each state

 and enabled action , exactly one transition exists. The notation means that

 is an element of . We use to denote the probability of reaching from to . By the

action . is the set of goal states. MDPs are widely used to model decision making problems in
stochastic environments. Transitions of an MDP M show the behavior of the related system [1]. For a state

, a transition is performed in two steps: First, an action is selected non-deterministically.

Next, the destination state is selected randomly with probability . We use , ,

 for the set of successor and predecessor and -successor states of :

 (1)

 (2)

 (3)

We use for the size of and define it as the number of states and transitions of M. A finite path

of is a possible sequence of actions and transitions of and is defined as where

, and for all . We use for the last state of .
Reachability probabilities are one of the main properties of probabilistic models that are computed

in probabilistic model checking [3, 4]. A reachability probability is defined as the probability of reaching a

goal state from the initial state of the model. In the case of MDPs, reachability probabilities are defined as the

optimal (minimal or maximal) probability of reaching one of the goal states from the initial state . We use

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improving graph-based methods for computing qualitative properties of… (Mohammadsadegh Mohagheghi)

1573

 and for minimal and maximal reachability probabilities of M. Iterative
numerical approaches (such as value iteration [18] and policy iteration [4]) can be used to approximate the

reachability probabilities.

2.2. Qualitative Reachability
Some graph-based computations can determine the set of states for which the extremal reachability

probabilities are exactly 0 or 1. In the case of maximum reachability probability, these sets are denoted by

 and and are defined as:

 (4)

 (5)

We define for the remaining states. For the case of minimum reachability

probabilities, we use , and and define them in an analogous way [4]. The computations of

these sets are called qualitative reachability analysis and are used as pre-computation in probabilistic mode

checking. The main aims of pre-computations are to simplify the iterative computations by focusing on
and to increase the precision of computations [4, 18, 20, 25]. Algorithm 1 and Algorithm 2 show the standard

pre-computation methods for the and sets [4].

Algorithm 1 iteratively computes the set of states that can reach to one of the goal

states . In each iteration, the algorithm adds a state to if at least one state has been

added to in the previous iteration. For any state , we have . The remaining

states cannot reach to any of the goal states and are returned as the set.

Algorithm 2 uses a nested while loop to compute the set. The outer loop starts from and

successively removes those states for which we are sure . It induces a sequence

of sets, where . To compute the sets, the inner loop starts from G (line 6 of

Algorithm 2) and iteratively adds each state to if can reach to one of the goal states with

probability one via the states of For the remaining states (the states in), we are sure that they do

not belong to . The proof of correctness of these algorithms is available in [18].

3. RESEARCH METHOD

The time complexity of Algorithm 1 is in and the time complexity of Algorithm 2 is in

. In these cases, we suppose that for each state , the algorithms can determine any states of

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 1, April 2020 : 1571 - 1577

1574

 in [1]. For this purpose, the method should restore the information of the model in the

backward approach, i.e. for each state , the list of states in should be restored. The main
drawback of restoring the information of a model is its memory overhead which is a main challenge in the

state explosion problem. On the other hand, the forward implementation of these algorithms (as is used in

PRISM [10]) need not any additional memory, but may increase the running time of the computations.

To improve the performance of the pre-computations in the forward manner, we propose a heuristic to reduce

their running time. As the first part of the heuristic, we modify Algorithm 1 for the computation of the
set. As the second part (the main contribution of the work), we propose a new approach to approximate the

 set.

3.1. Improving Method for Computing

The idea of Algorithm 1 (which is used in PRISM and IscasMC) is to add a state to if at

least one states in has been added in the previous iteration. To reduce the number of iterations of this

algorithm in the forward approach, it can use only one set () to store the set of states that can reach to .

In each iteration , a state is added to if at least one state in has been added to in the

iteration or . Note that in Algorithm 1, is added to only if one state in has been added to

 in the previous iteration and not in the current one.

3.2. Improving Method for Approximating

In this section we propose our heuristic to compute a set as an approximation of the

set. This heuristic starts from and iteratively compute the sets

where is the fixed point set of the computations. For each iteration of the heuristic, a state should

be added to if there exists an action for which . In this case, all -successor

states of are in , which means for all of these states, we are sure that their maximum reachability
probability is one. This heuristic is explained in Algorithm 3.

The running time of Algorithm 3 is where the number of iterations of the algorithm is and

 is the size of the model. In worst case, and the worst case time complexity of the algorithm

is in . However, in most cases, the algorithm terminates after a few numbers of iterations. Note
that the proposed heuristics in this section (Subsections 3.1 and 3.2) do not need any additional memory.

4. RESULTS AND ANALYSIS

To compare the running time of our heuristic for pre-computation with the standard method,

we have implemented them in PRISM. We use 5 classes of standard case studies which are used in several

previous works [4, 15, 19, 20, 26, 28]. For each class, we consider 4 models. More details about these case

studies are available in [10]. In Table 1 we propose the name, parameter values, the number of states of each

model and the experimental results. We use the sparse engine of PRISM for running the standard and

improved pre-computation methods. We propose the number of states in the and sets and the

approximation of (columns and in Table 1. We also propose the running times of
standard pre-computations and our proposed methods. All times are in seconds.

For most cases (except the coin ones) our heuristic finds all states of the set. On the other
hand, our heuristic reduces the running time of pre-computations for all cases. The best result is for CSMA

(n=3,k=6) which the running time of the standard pre-computation method is more than 8 hours (24603

seconds), while the running time of our improved method is less than 30 seconds. For other cases of CSMA

and most cases of zeroconf, wlan and wlan collide our methods reduce the running times of pre-computation
by two orders of magnitude. These results show that our heuristic presents a significant improvement in the

performance of graph-based iterative methods in probabilistic model checking.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improving graph-based methods for computing qualitative properties of… (Mohammadsadegh Mohagheghi)

1575

Table 1. Running Time of Pre-Computation Methods for MDP Models
Model Parameter(s)

Time

Time

Coin n=2,K=45 5,776 12 30 3.24 12 0.01

n=4,K=12 32,056 6,156 294 10.96 324 0.03

n=4,K=20 53,048 9,996 294 29.2 324 0.08

n=6,K=9 68,914 18,202 694 28.48 988 0.07

Zeroconf K=8 1,870,338 171,749 611,330 77.75 171,749 0.66

K=10 3,001,911 197,004 957,807 94.6 197,004 1.16

K=12 3,754,386 189,372 1,082,145 113.5 189,372 1.46

K=14 4,427,159 171,851 1,160,964 141.1 171,851 1.8

CSMA n=3,k=4 249,678 118,544 7,726 22.72 118,544 0.24

n=3,k=6 14,222,529 10,120,379 169,206 24603 10,120,379 25.26

n=4,k=2 39,481 6,312 1,972 5.7 6,312 0.05

n=4,k=4 5,874,853 514,457 171,960 1324.9 514,457 22.12

Wlan TTM=1500,n=5 3,634,518 2,734,164 847,967 60.98 2,734,164 1.51

TTM=3000,n=5 5,989,518 4,300,164 1,594,967 125.81 4,300,164 2.63

TTM=250,n=6 5,755,628 5,083,436 641,581 45.7 5,083,436 3.56

TTM=450,n=6 6,379,028 5,497,036 844,381 60.62 5,497,036 4.13

Wlan_collide TTM=1000,n=5 2,851,619 2,212,165 601,067 65.95 2,212,165 1.04

TTM=2500,n=5 5,209,619 3,778,165 1,351,067 140.36 3,778,165 2.5

TTM=200,n=6 5,600,280 4,980,037 591,382 54.85 4,980,037 3.26

TTM=400,n=6 6,224,080 5,393,637 794,582 84.99 5,393,637 3.89

To compare the overall running time of probabilistic model checking, we consider the running times

of graph-based computations of the and sets and the running time of the iterative numerical
methods. We select one sample model from each class of case studies and propose the results in Figures 1 to

3. Each figure presents the running time of the standard and improved methods for computing the and

 sets. We also use the SCC-based topological and the learning-based methods as two well-known
improved iterative graph-based and numerical methods [16, 19, 20, 23, 25]. These methods are now available

in the explicit engine of PRISM. For the Coin class, we select two sample models to study the impact of our

heuristic on the overall running time of the probabilistic model checking. The results of these figures show
that for all cases, the running time of probabilistic model checking with our heuristic is less than the running

time of the other methods. The results show that the running times are reduced for the computations of both

 and sets. In most cases, the total running time of probabilistic model checking is reduced to less
than 50% of the running time of the best previous method, which shows a significant improvement in our

proposed heuristic. For CSMA(n=3,k=6) and CSMA(n=4,k=4), which is not presented here, the total running

time is reduced to less than 1% of the running time of the best previous method.

Figure 1. Running times of probabilistic model

checking for Coin sample models

Figure 2. Running times of probabilistic model

checking for Zeroconf and CSMA sample models

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 18, No. 1, April 2020 : 1571 - 1577

1576

Figure 3. Running times of probabilistic model checking for wlan and wlan_col models

5. CONCLUSION

The paper proposed a heuristic to reduce the running time of pre-computation for probabilistic

model checking of MDPs. The idea of the proposed methods in subsection 3.1 and 3.2 is to reduce the

number of iterations of the graph-based pre-computations. Experimental results show that the proposed

heuristic reduces the running times by several orders of magnitude and outperforms the standard and

previous improved methods for probabilistic model checking. For future works, other probabilistic structures
(such as probabilistic timed automata or stochastic hybrid automata) can be considered and one can study the

impact of the proposed heuristic on the performance of model checking methods for these structures.

REFERENCES
[1] Christel Baier and Joost-Pieter Katoen. ”Principles of model checking”. MIT press, 2008.
[2] Mungkasi, Sudi. ”Formal expansion method for solving an electrical circuit model.” TELKOMNIKA

(Telecommunication, Computing, Electronics and Control), vol. 17(3). pp. 1338-1343, 2019.
[3] Christel Baier, et al.,”Probabilistic Model Checking”. Dependable Software Systems Engineering. 2016,

vol. 45, pp: 1-23.
[4] V. Forejt et al.,”Automated Verification Techniques for Probabilistic Systems”. In SFM 2011, Vol. 11, pp. 53-113.
[5] Alostad, Jasem M.”Improved probabilistic distance based locality preserving projections method to reduce

dimensionality in large datasets.” International Journal of Electrical and Computer Engineering (IJECE), vol. 9(1),
pp. 593-599, 2019.

[6] EzatulAkma Abdullah, SitiMeriamZahari, S.SarifahRadiahShariff, Muhammad Asmui Abdul Rahim. "Modelling
volatility of Kuala Lumpur composite index (KLCI) using SV and garch models”. Indonesian Journal of Electrical
Engineering and Computer Science (IJEECS). Vol. 13(3), 2019.

[7] ML. Puterman”Markov decision processes: discrete stochastic dynamic programming”, John Wiley & Sons;

2014 Aug 28.
[8] Lalaoui, Mohamed, Abdellatif El Afia, and RaddouaneChiheb. ”A self-tuned simulated annealing algorithm using

hidden markov model.” International Journal of Electrical and Computer Engineering (IJECE), vol. 8(1),
pp. 291-298, 2018.

[9] Marbun, Musa Partahi, NgapuliIrmeaSinisuka, and NanangHariyanto. ”The use of Markov Chain method to
determine spare transformer number and location.”International Journal of Electrical and Computer Engineering
(IJECE), vol. 9(1), pp. 1-8, 2019.

[10] Kwiatkowska M, Norman G, and Parker D. “PRISM 4.0: Verification of probabilistic real-time systems”.

InInternational conference on computer aided verification 2011 Jul 14 (pp. 585-591). Springer, Berlin, Heidelberg.
[11] Dehnert C, et al., “A storm is coming: A modern probabilistic model checker”. InInternational Conference on

Computer Aided Verification 2017 Jul 24 (pp. 592-600). Springer, Cham.
[12] Hahn, Ernst Moritz, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. ”ISCASMC: A Webbased Probabilistic

Model Checker.” In International Symposium on Formal Methods, pp. 312-317. Springer, Cham, 2014.
[13] G. Norman and D. Parker. Quantitative verification:”Formal guarantees for timeliness, reliability and

performance”. Technical report, The London Mathematical Society and the Smith Institute, 2014.
[14] Hartmanns. ”On the analysis of stochastic timed systems”. PhD thesis, Saarland University, 2015.

[15] Joachim Klein, et al.,”Advances in probabilistic model checking with PRISM: variable reordering, quantiles and
weak deterministic Bchi automata”. International Journal on Software Tools for Technology Transfer, vol. 20(2),
pages 179-194. 2018.

[16] Mateusz Ujma. ”On Verification and Controller Synthesis for Probabilistic Systems at Runtime” PhD thesis,
University of Oxford, 2015.

[17] Guldstrand Larsen. ”Statistical Model Checking the 2018 Edition!” In: Margaria T., Steffen B. (Eds) Leveraging
Applications of Formal Methods, Verification and Validation. Verification. ISoLA 2018. Lecture Notes in
Computer Science, vol 11245. Springer, Cham.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improving graph-based methods for computing qualitative properties of… (Mohammadsadegh Mohagheghi)

1577

[18] Luca De Alfaro. ”Formal verification of probabilistic systems”. PhD thesis, Stanford University, 1997.
[19] Christel Baier, et al.,”Ensuring the reliability of your model checker: Interval iteration for Markov Decision

Processes.” In International Conference on Computer Aided Verification, pp. 160-180. Springer, Cham, 2017.
[20] M, Kwiatkowska et al.,”Incremental quantitative verification for Markov decision processes”. In Dependable

Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Conference on 2011 Jun 27 (pp. 359-370). IEEE.
[21] Chatterjee K, Lacki J. “Faster algorithms for Markov decision processes with low treewidth”. In International

Conference on Computer Aided Verification 2013 Jul 13 (pp. 543-558). Springer, Berlin, Heidelberg.
[22] Haddad, Serge, and Benjamin Monmege. ”Interval iteration algorithm for MDPs and IMDPs.” Theoretical

Computer Science, 735 (2018): 111-131.
[23] Klein, Joachim, ChristelBaier, Philipp Chrszon, Marcus Daum, Clemens Dubslaff, SaschaKlppelholz, Steffen M?

Rcker, and David Mller. ”Advances in probabilistic model checking with PRISM: variable reordering, quantiles
and weak deterministic Bchi automata.” International Journal on Software Tools for Technology Transfer, vol.
20(2), pp. 179-194, 2018.

[24] Mateescu, Radu, and Jos Ignacio Requeno. ”On-the-fly model checking for extended actionbased probabilistic
operators.” International Journal on Software Tools for Technology Transfer. Vol 20(5), pp. 563-587, 2018.

[25] Wang, Jingyi, Jun Sun, Qixia Yuan, and Jun Pang. ”Learning probabilistic models for model checking:
an evolutionary approach and an empirical study.” International Journal on Software Tools for Technology
Transfer. Vol 20(6), pp. 689-704, 2018.

[26] Ernst Moritz, et. al.”The 2019 comparison of tools for the analysis of quantitative formal models.” In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 69-92. Springer,
Cham, 2019.

[27] Von Essen, Christian, Barbara Jobstmann, David Parker, and Rahul Varshneya. ”Synthesizing efficient systems in
probabilistic environments.” ActaInformatica, vol 53(4), pp. 425-457, 2016.

[28] Mohammadsadegh Mohagheghi, Jaber Karimpour, Ayaz Isazadeh, Prioritizing Methods to Accelerate Probabilistic
Model Checking of Discrete-Time Markov Models, The Computer Journal, 2019.

BIOGRAPHIES OF AUTHORS

Mohammadsadegh Mohagheghi received his Ph.D in computer science from University of
Tabriz in 2019, Ms in computer science from Sharif university of technology in 2008 and Bs
in software engineering from Shahidbeheshty university in 2006. He is cuurently a faculty
member of computer science in Vali-e-asr university of Rafsanjan, Iran. His main research
interests include formal verification of stochastic and real-time systems, probabilistic model

checking and machine learning.

Khayyam Salehi received his M.Sc. degree in Computer Science from Sharif University of
Technology in 2010 and his Ph.D. in Computer Science at University of Tabriz in 2019.
His research interests include quantification of information leakage, formal methods, and AI

in computer security.

