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Abstract 
In this paper, a novel regression algorithm named ν-twin support vector regression (ν-TSVR) is 

presented, improving upon the recently proposed twin support vector regression (TSVR). It also tries to 

seek two nonparallel down- and up-bounds for the unknown function. By treating the size of one-sided -

insensitive tube as optimization variables with corresponding parameters s, we reformulate the original 

TSVR as a more sensible model. To this end, ν-TSVR has the advantage that s are learned 

simultaneously with regressor. Meantime, we give a theoretical result concerning the meaning of s. 
Moreover, by introducing structural risk minimization principle, the over-fitting phenomenon in TSVR can 
be avoided. We analyze the algorithm theoretically and demonstrate its effectiveness via the experimental 
results on several artificial and benchmark datasets. 
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1. Introduction 
The support vector machine (SVM) [1, 2] is one of the leading techniques for its state-

of-the-art performance in solving problems emerged in patter classification, function 
approximation and density estimation. Different from the conventional artificial neural networks 
(ANNs) which aim at reducing empirical risk, SVM is based on structural risk minimization 
(SRM) principle [2] which minimizes the upper bound of the generalization error which is 
bounded by both empirical risk and a confidence interval term. Thus, SRM principle trades off 
the training error and the complexity of the solution, leading to good performance for the new 
coming samples. Within a few years after its introduction, SVM has been applied successfully in 
many real-world fields including face detection [3], text categorization [4], drug discovery [5] and 
time series prediction [6]. 

  Though SVM owns excellent performance, its training cost is expensive since it needs 
to solve a quadratic programming problem (QPP) with computational complexity O(N3), where N 
is the total size of training samples. So far, many fast training algorithms have been developed 
to accelerate the training of SVM. On the whole, they can be categorized into two kinds. One is 
to develop fast training algorithm for the standard SVM model. These kinds of algorithms 
includes Chunking [7, 8], sequential minimal optimization (SMO) [8], SVMLight, SVMTorch and 
LibSVM. The central idea of these algorithms is to decompose a larger scale QPP into a series 
of smaller scale QPPs which can be solved efficiently. On the other hand, in contrast with these 
decomposition strategy based methods, many variants of standard SVM model were proposed. 
By replacing hinge loss with squared loss, Suykens and Vandewalle [9] proposed the least 
squares SVM (LSSVM). LSSVM owns fast training speed since it only needs to solve a system 
of linear equations instead of QPP as in SVM. Recently, Jayadeva et al [10] proposed the twin 
support vector machine (TSVM) for binary classification which is in the spirit of GEPSVM [11]. It 
seeks two nonparallel planes by solving two smaller and related SVM-type problems, in which 
each hyper-plane is closer to its own class and is as far as possible from the other one. 
Empirical results show that TSVM is as competitive as SVM in terms of generalization 
performance whereas the former is around four times faster than the latter [10]. Some 
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extensions to TSVM include least squares TSVM (LSTSVM) [12], projection TSVM (PTSVM) 
[13], ν-TSVM [14]. 

  As for support vector regression (SVR), there also exist some fast algorithms for 
learning the optimal regressor, such as SMO for SVM regression [15], Least squares SVR 
(LSSVR) [9], etc. Recently, a novel regressor called twin support vector regression (TSVR) was 
proposed [24]. TSVR extends the idea of TSVM to do regression instead of classification, which 
aims at generating two nonparallel functions such that each function determines the ε-
insensitive down- or up-bounds of the unknown functions. The two bounds actually form two 
one-sided ε-insensitive tubes to respectively contain the training samples. Furthermore, the two 
bound functions can be obtained by solving two smaller sized QPPs rather than a larger one as 
in the classic SVR resulting that TSVR owns fast training speed. TSVR has become one of the 
popular regression methods due to its low computational cost and competitive performance. 
Some extensions of TSVR include the smooth TSVR [16], robust TSVR [17] and the primal 
TSVR [18]. 

Although the experimental results in [24] have shown that the TSVR compares 
favorably with the SVR and LSSVR, it still has some shortcomings. First, according to the 
formulation of TSVR, it merely minimizes the empirical risk on the training samples, which is 
contrast to the SRM principle. This may lead to the over-fitting to the training samples and 
degrade its generalization performance. Second, we will show in Section 3.1 that the predefined 
εs, i.e. the size of one-sided ε-insensitive tube, may virtually never affect the final regressor 
provided they have the same value. This problem makes TSVR depart from the inherent 
meaning of ε-insensitive loss model in which the deduced ε-insensitive tube is used to tolerate 
noises and benefits to improve generalization performance. 

 
 

2. Research Method 

Consider a regression problem with the training set , 

where  and . We also organize the samples  in the matrix  such that the 

th row of  denotes the th training sample . 
 

2.1 Support vector regression 
As for linear ν-SVR, we would like to find a linear regression function 
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that has at most  deviation from the actually obtained targets  for all the training 
samples, and at the same time is as flat as possible. This can be done by minimizing the 
following objective function 
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. Only those samples  outside the  have nonzero 

 or . An intuitive geometric illustration for SVR is shown in Figure 1. 
 

For the nonlinear regression problem, we first map a sample  into a high dimensional 

feature space via the feature map  and then construct the linear regression 

function in  as 
 

 (3) 
 
In general, H may have a very high dimension which prevents the direct computation. 

However, under the Mercer theorem [20, 21], it is possible to use some kernel  to 

express the inner product in H, i.e. . Similar to (2), the regressor in H is 
determined by  

 
 

 
Figure 1. Geometrical interpretation of classic 

SVR 
Figure 2. Geometrical interpretation of TSVR 
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where  and  are the Lagrangian multiplier vectors in , is a Gram 

matrix, called kernel matrix in that its entries are exactly . Notice that we must solve 
(5) which is more computational complex than support vector classification (SVC) because there 

are  variables to be optimized in SVR rather than  variables in SVC. After solving (5) to 

obtain  and , we can predict the output of a new coming data by 
 

 (6) 
 

2.2 Twin support vector regression 
Different from the classic SVR, TSVR seeks a pair of nonparallel functions such that 

each one determines the -insensitive down- and up-bounds of the unknown regression 
function. Geometrically, the concept of TSVR is depicted in Figure 2. 

For the linear case, TSVR construct the following two nonparallel -insensitive down- 

and up-bound functions  and  in the input space 
 

 (6) 
 
and  
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Then TSVR determines  and  by solving the following pair of QPPs: 
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 (11)  
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where  and  are the Lagrangian multiplier vectors in  for the optimization 

problem (12) and (13) respectively. Notice that  is always positive semi-definite. However, 
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solving (11) and (12), we obtain the augmented vectors for  and , which are 
 

 (13) 
 

 (14) 
 
Then the estimated regressor is the average of its -insensitive down- and up-bounds 
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3. Experimental results and analysis 
3.1 Configuration 

To demonstrate the performance of the proposed ν-TSVR, we compare it with TSVR, 
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tuning set is returned to the whole training set to learn the final regressor. Moreover, two 
standard errors, root mean squared error (RMSE) and mean absolute error (MAE) of the 10-fold 
cross validation are used as derivation measurement between the real and the predicted values. 
They are defined as follows, respectively 

 

 (16) 
 

 (17) 
 

3.2 Evaluation on synthetic datasets 
We first evaluate the performance of ν-TSVR on the regression of the following two 

functions [24], which are defined as 
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draw from a Gaussian distribution with zero mean and variance ,  is defined by (18) 
and (19). 
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 (a)    (b) 
            
Figure 3. The proposed ν-TSVR regression with (a) ν1=0.1 (b) ν1=0.3 
 

 (a)    (b) 
 

Figure 4. The proposed ν-TSVR regression with (a) σ=0.1 (b) σ=0.5 
 
 

Table 1. Comparisons among ν-TSVR, TSVR, LSSVR and SVR on TypeA and TypeB datasets 

Data set 

ν-TSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

TSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

LSSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

SVR 
RMSE±STD 
MAE±STD 

CPU time (s) 
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0.2507±0.0570 
0.2139±0.0508 

0.0050 

0.2489±0.0528 
0.2087±0.0489 

0.1170 

 
 

To train the proposed ν-TSVR regressor, the parameters ( , , ,kernel width ) 
need to be set to their optimal values beforehand. Thus, the choice of these parameters is very 
important to build a good regressor. Next, we perform various experiments to show the 
influence of these parameters on the generalization ability of the proposed ν-TSVR. Figure 
6(a)~(d) illustrate the results (RMSEs) on the TypeA and TypeB datasets with different settings 

of the following parameters: , ν,  and . From Figure 7. (a) and (b) , we observe that over 

a large range of  and ν, the testing error in ν-TSVR is insensitive toward changes in  and ν. 
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On the other hand, we find ν-TSVR is sensitive to both complexity constant  and kernel width 

. It implies that the introduction of  is significant to improve generalization.  
 

 

(a)   (b) 
 

Figure. 5 Predictions of ν-TSVR, TSVR, LSSVR and SVR on (a) TypeA (b) TypeB datasets 
 

 
(a)   

 
 (b) 

 
(c)    

 
 (d) 

Figure 6. The testing error of ν-TSVR for different values of (a) balance constant  (b) error 
constant  (c) penalty constant  (d) kernel width  
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  (20) 
 

                       
 

                           
 

where  means a uniform distribution over the interval spanned by  and . 
This example was also used in previous research [25, 26]. Figure 7(a) show the true function 
and the estimated function by ν-TSVR. Figure 8(b) show the true variance function and the 
estimated variance function by ν-TSVR which is given by ܣ ൌ 1/2ሺ ଶ݂ሺݔሻ െ ଵ݂ሺݔሻ െ 2 ൅ 1ሻ 
Without requiring prior knowledge about the heteroscedastic structure of noise, the proposed ν-
TSVR automatically adjusts the two one-sided insensitive tubes with minimal size to include the 
data.  

 

 (a)    (b) 
 

Figure 7. ν-TSVR on the heteroscedastic data (a) the true and estimated function (b) the true 
and estimated variance 

 

 
Figure 8. Motorcycle dataset and regression results of ν-TSVR, TSVR, LSSVR and SVR 

 
 
As seen from Figure 8, by learning the -insensitive down- and up-bounds 

respectively, ν-TSVR captures the characteristics of the heteroscedastic error structure. The 
RMSE for this heteroscedastic data is 0.0484. Therefore, ν-TSVR is also suitable for regression 
under heteroscedastic noise. 
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Finally, we further synthesize eight artificial datasets, tabulated in Table 2, to evaluate 
the performance of ν-TSVR. All these datasets have been used in the literatures, i.e. [16, 27], to 
explore the performance of regressors. The average results of ten groups test are reported in 
Table 3. As seen from Table 3, the proposed ν-TSVR owns superior performance to the other 
methods in most cases. The CPU time on these datasets indicates ν-TSVR is also an efficient 
methods compared with TSVR. 

 
 

Table 2. The synthetic datasets 
Data set Function Attribute 

Multi  
Plane  

Polynomial  
Friedman #1  

Friedman #2  

 

Friedman #3  

 

2-d Mexican Hat  

3-d Mexican Hat  

 
 

Table 3. Comparisons among ν-TSVR, TSVR, LSSVR and SVR on synthetic datasets 
Data set ν-TSVR 

RMSE±STD 
MAE±STD 

CPU time (s) 

TSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

LSSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

SVR 
RMSE±STD 
MAE±STD 

CPU time (s) 
Multi 0.1769±0.0231 

0.1414±0.0219 
0.0680 

0.1822±0.0254 
0.1460±0.0239 

0.0719 

0.1774±0.0168 
0.1432±0.0188 

0.0049 

0.1952±0.0367 
0.1585±0.0364 

0.1343 
Plane 0.6555±0.1629 

0.5252±0.1322 
0.0555 

0.6672±0.1747 
0.5292±0.1406 

0.0724 

0.6720±0.1478 
0.5329±0.1110 

0.0045 

0.6614±0.1338 
0.5250±0.1008 

0.1141 
Polynomial 0.0515±0.0067 

0.0423±0.0056 
0.0734 

0.0519±0.0060 
0.0426±0.0048 

0.0695 

0.0520±0.0071 
0.0428±0.0060 

0.0043 

0.0526±0.0059 
0.0435±0.0055 

0.1294 
Friedman #1 0.1853±0.0902 

0.1372±0.0663 
0.0652 

0.1296±0.0615 
0.0910±0.0354 

0.0776 

0.1368±0.0539 
0.1006±0.0361 

0.0052 

0.1600±0.0979 
0.1154±0.0651 

0.1273 
Friedman #2 0.0101±0.0029 

0.0073±0.0019 
0.0464 

0.0100±0.0029 
0.0073±0.0019 

0.0660 

0.0099±0.0032 
0.0069±0.0020 

0.0047 

0.0098±0.0057 
0.0059±0.0026 

0.1444 
Friedman #3 0.6428±0.1110 

0.4966±0.0579 
0.0707 

0.6746±0.0994 
0.5096±0.0345 

0.0784 

0.6523±0.1133 
0.5012±0.0584 

0.0090 

0.6581±0.1297 
0.5120±0.0615 

0.1454 
2-d Mexican Hat 0.4351±0.0834 

0.3513±0.0693 
0.0740 

0.4412±0.0895 
0.3534±0.0709 

0.0757 

0.4386±0.0892 
0.3509±0.0675 

0.0055 

0.4444±0.0858 
0.3629±0.0687 

0.1293 
3-d Mexican Hat 1.0166±0.1730 

0.8167±0.1253 
0.0703 

1.0510±0.1357 
0.8445±0.1098 

0.0705 

1.3547±0.6480 
1.0660±0.4369 

0.0048 

1.0384±0.1597 
0.8347±0.1188 

0.1265 

 
 
3.3 Evaluation on benchmark datasets 

To further test the performance of these algorithms, we run them on several publicly 
available benchmark datasets, including Boston Housing, AutoMPG, Servo, MachineCPU, 
Triazine, AutoPrice, Breast Cancer, ConcreteCS [29] and Motorcycle [30]. These datasets are 
commonly used in testing regression algorithms. Notice that all samples are normalized such 
that they have zero mean and unity variance before learning.  
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Table 4 presents the average results of four algorithms with ten-fold cross-validation on 
these benchmark datasets. Figure 9 shows the motorcycle dataset and regression results of the 
four algorithms. As seen from Table 4, ν-TSVR derives better performance in most cases 
comparing with the other three methods. As for the training time, LSSVR still spends on the 
least CPU time among these algorithms, while our ν-TSVR is as comparable as the original 
TSVR and both are faster than SVR. In a word, the experimental results indicate ν-TSVR is an 
effective algorithm for real-world regression problems. 

 
 

Table 4. Comparisons among ν-TSVR, TSVR, LSSVR and SVR on benchmark datasets 
Data set ν-TSVR 

RMSE±STD 
MAE±STD 

CPU time (s) 

TSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

LSSVR 
RMSE±STD 
MAE±STD 

CPU time (s) 

SVR 
RMSE±STD 
MAE±STD 

CPU time (s) 
Boston Housing 

506×14 
0.3186±0.0764 
0.2332±0.0433 

0.5537 

0.3318±0.0774 
0.2431±0.0443 

0.6048 

0.3226±0.0914 
0.2260±0.0445 

0.0401 

0.3496±0.0923 
0.2250±0.0385 

1.1566 
AutoMPG 

398×8 
0.3583±0.0626 
0.2603±0.0419 

0.3061 

0.3698±0.0743 
0.2722±0.0520 

0.2911 

0.3709±0.0795 
0.2693±0.0528 

0.0229 

0.3947±0.1483 
0.2857±0.1002 

0.6282 
Servo 

164×13 
0.6826±0.1339 
0.5416±0.0930 

0.0501 

0.6184±0.1522 
0.4891±0.1059 

0.0554 

0.6847±0.1702 
0.5278±0.1234 

0.0047 

0.6320±0.2055 
0.4425±0.1758 

0.0848 
Machine CPU 

209×8 
0.0596±0.0477 
0.0255±0.0146 

0.0616 

0.0584±0.0325 
0.0271±0.0116 

0.0675 

0.0502±0.0332 
0.0227±0.0111 

0.0043 

0.0614±0.0564 
0.0231±0.0148 

0.1537 
Triazine 
186×61 

0.8868±0.1146 
0.6669±0.0811 

0.0565 

0.8885±0.1182 
0.6986±0.0796 

0.0687 

0.9236±0.1293 
0.6809±0.0933 

0.0050 

0.9197±0.1626 
0.6606±0.1134 

0.0996 
AutoPrice 
159×16 

0.4246±0.1010 
0.2929±0.0717 

0.0420 

0.4314±0.0867 
0.2868±0.0546 

0.0402 

0.4702±0.2896 
0.3029±0.1348 

0.0028 

0.4402±0.1572 
0.3017±0.1219 

0.0709 
Breast Cancer 

683×11 
0.3303±0.0659 
0.1718±0.0265 

1.1288 

0.3451±0.0462 
0.1937±0.0264 

1.0457 

0.3431±0.0854 
0.1706±0.0321 

0.0729 

0.3379±0.0629 
0.1991±0.0431 

2.7749 
ConcreteCS 

1030×9 
0.3835±0.0868 
0.2630±0.0619 

3.0028 

0.3948±0.0819 
0.2634±0.0632 

3.0171 

0.3746±0.0592 
0.2602±0.0406 

0.1852 

0.3932±0.0618 
0.2820±0.0378 

7.4709 
Motorcycle 

133×2 
0.4649±0.0890 
0.3537±0.0596 

0.0457 

0.4659±0.0847 
0.3570±0.0641 

0.0469 

0.4671±0.0884 
0.3594±0.0607 

0.0076 

0.4662±0.0936 
0.3396±0.0609 

0.0620 

  
 

4. Conclusion 
In this paper, we improve the recently proposed TSVR to a novel regression algorithm, 

coined ν-TSVR. We first give a two-step view for the original TSVR to show that the sizes of 
one-sided tubes in TSVR are independent on its optimization formulations which may degrade 
the performance of TSVR. To this end, we propose a new pair of QPPs which can directly learn 
two nonparallel one-sided tubes by introducing the new parameters νs. Similar to the ν-SVR, νs 
have greater theoretical interpretation, such as the determination of the bounds for the fractions 
of pSVs and margin errors. Moreover, ν-TSVR automatically adjusts the one-sided tubes with 
minimal radius to include the given data. The experimental results on both synthetic and 
benchmark datasets have indicated that ν-TSVR is an efficient and effective method for 
regression. 
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