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 This study considers the performances of a downlink non-orthogonal 

multiple access (NOMA) network over Nakagami-m fading channels.  
This scheme employs two hop transmission. We first examine the analytical 
outage probability expression for each user and then these results are verified 
by Monte Carlo simulations. Based upon the outage probability, the maximal 
throughput are obtained and analyzed under different parameters. 
Furthermore, the effects of Nakagami-m channel fading on the probability 
and throughput are investigated. The results indicate that the performance of 
the NOMA system is excellent as appropriate selection of simulated 
parameters. This analysis can be recommended for designing the NOMA 

systems in the future fifth-generation wireless communication. 
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1. INTRODUCTION  
As one of the bright networks, the non-orthogonal multiple access (NOMA) technique has been 

proposed to improved spectral efficiency for the fifth generation (5G) wireless communication system [1, 2]. 

Unlike the conventional orthogonal multiple access (MA) technique, NOMA can divide the power domain to 

multiple users to access to networks [3]. At the base station (BS) side, superposition coding is employed to 

support the signals of multiple users multiplexed before transmitting. At the users’ side, the inter-user 

interference can be eliminated by employing successive interference cancellation (SIC). In addition to power 

domain based multiplexing, an another distinctive feature of NOMA is user fairness [4]. In these NOMA 

schemes, more power is allocated to users who possess worse channel conditions while users with higher 

channel gains require less power. As a result, NOMA communication system can be able realized to improve 

trade-off between user fairness and the performance. By providing significant advantages over  

the conventional orthogonal multiple access protocols, several studies have shown promising deployment of 
NOMA to achieve higher throughput and faster traffic. Recently, energy harvesting and relaying scheme are 

proposed to provide extended coverage and improved outage performance in many scenarios such as [5-16].  

Full-duplex scheme is proposed to provide bandwidth efficiency for such relaying networks [5, 6]. 

Using relaying scheme, the relay assists to far users achieve more chances to remain their operations.  

For example, these systems can be able to eliminate interference such as co-channel interference (CCI) [8]. 

This paper first examine relaying network together with employing PDMA under impact of CCI on its 

performance analysis. In order to further enhance the reliability of NOMA, this technique has been extended 

to cooperative transmission scenarios [5-8]. In cooperative NOMA (C-NOMA) networks, users and relays 

cooperate to combat channel fading and improve the performances.  
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Furthermore, improved system performance as combining relaying networks with NOMA as in  

[17-24]. The authors in [17] considered relay selection to improve performance of far users in such NOMA. 

Interestingly, secure performance can be satisfied in NOMA based on relay selection [17]. Wireless powered 

networks are employed to support NOMA prolong life-time as power constraint-assisted device [18, 19].  

The authors in [18] investigated imperfection in channel state information (CSI) on system performance of 

C-NOMA. However, these systems are considered performance in term of Rayleigh fading channel. The bad 

situation of imperfect CSI can be shown in degradation performance as in [19, 21]. To consider Nakagami-m 

fading, Men et al. [24] have investigated of the C-NOMA system with respect to the outage probability,  
but the diversity technique was not considered. Actually, the performance is further enhanced by diversity 

reception. Unfortunately, the closed-forms of the performance metrics are hard to derive in such a case.  

Thus, it is very challenging to provide an accurate analysis of the C-NOMA system with relaying scheme and 

Nakagami-m fading. Motivated by this requirement, we consider a relaying transmission for downlink in 

NOMA network with respect to Nakagami-m fading in this study. 

 

 

2. SYSTEM MODEL AND OUTAGE PERFORMANCE ANALYSIS  

2.1.   System model 

Consider a downlink for this NOMA network in this system model. This system model consists of 

one single-antenna base station (BS), one single-antenna relay (R) and two single-antenna users ( 1 2,D D ),  

as shown in Figure 1. In this scenario, the BS serves the two users in the same time. Two far NOMA users 

can be activated thanks to the help of a decode-and-forward (DF) relay. It is assumed that the channel gain of 

the BS-relay link experiences Nakagami-m distribution with fading parameters m. Each of the channel gains 

is assumed to be independent.   

 

 

 
 

Figure 1. System model of NOMA over Nakagami-m fading channel 

 

 

Based on the aforementioned assumptions, the received signals at kD , 1,2k   can be written as 

follows: 

 
2

1

d d

k k i i k

i

y Pg a x w


   (1) 
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data can be written by: 

 

1

2

1 1

2

2 1

,
1

r

d

r

a g

a g








. (2) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Novel multiple access for cooperative networks with nakagami-m fading: system... (Tu-Trinh Thi Nguyen) 

235 

Additionally, user 2 only recovers its data after successfully decomposing user 1 data and applying 

SIC. Then, the SINR and SNR at second user 
2D  to detect the first user symbol for SIC purpose and to 

discover its own data are respectively given by: 
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We denote 
2r

P



  as signal to noise ratio (SNR) at relay. Then the received SINR at 

2D  to detect its own 

information is given by: 
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3. PERFORMANCE ANALYSIS 

We first call channel assumption:  Assuming, all channel gain undergo independence Nakagami-m 

fading distribution. The PDF and CDF are given by 
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where z z zm 
 with z  and zm

 represent the mean and integer fading factor, 
1 12h g km m m m m    ,

1 2 11 1 2, , ,h r g r g r k hd d d           , 1 1 2, ,r r rd d d  are  distances related to these nodes,  is path-loss 

exponent. 

 

3.1.   The outage probability for detecting 1x
 at 1D

  

We first consider the outage probability for detecting 1x  at 1D  can be expressed as: 
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3.2.   The outage probability for detecting 2x
 at 2D

 

We call 22
2 2 1

Rth   as threshold SNR. Next, we continue to determine outage performance of 
2D  

to detect 
2x  and it is defined by: 
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Plugging above values of (3) and (4) into (11), we have: 
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After the implementation of the calculation, we have the outage probability for detecting 2x at 2D

can be formulated in closed-form as: 
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3.3.   The outage probability for detecting 2x   at 2D  with imperfect SIC 

The outage probability for detecting 2x  at 2D  in special case of imperfect SIC 
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Plugging above values of (3) and (5) into (14), we have  

 

 

1

1

1

2 2

1 2 2 2

2 1 22 2

2 2

22 1 2 1

2

1 2 1 1 2 1 2

2 2

2

2

1 Pr ,
1 1

1
1 Pr , max 0, 1

Pr

r ripSIC th th

r r d

th th

dth th th
rr r

th

a g a g
OP

a g k

a
g k

a a a a

g
a



 
 

 

 

    



 
    
  
 

   
       
        

 
 1 1

2

2 2
2 2 1

2 1 2 1 2

1
, max 0, 1

th th

d d th th
r r

a
k k

a a a



 

   

   
     
       

   (15) 

 

From (15), we can calculate 1  and 2  as follow:  
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and, 
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Plugging above values of (16) and (17) into (15), After the implementation of the calculation, we 

have the outage probability for detecting 2x at 2D  in special case of imperfect SIC can be formulated in 

closed-form as: 
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3.4.   The throughput on the outage probability 

Other metric provides further performance of such network. The throughput mainly depends on  

the outage probability. In particular, throughput performance can be obtained in three cases as follows: 
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4. SIMULATION RESULTS 
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This section provides numerical results. It can be seen outage performance of two users versus 

transmit SNR at the BS as in Figure 2. At ipSIC case, user 2’ performance will meet floor value at high SNR. 

The varying target rates contribute to outage performance and it shows that the better outage performance as 

lower target rates required.While Figure 3 illustrates throughput performance versus transmit SNR. 

 

 

 
 

Figure 2. Outage probability vs. the transmit SNR with 
1 0.9a   , 

2 0.1a  , 2m  , 2  , 0.005  , 

1 1 20.5, 0.5, 0.25r r rd d d    

 

 

 
 

Figure 3. Throughput performance vs. the transmit SNR with 1 0.9a   , 2 0.1a  , 2m  , 2  , 0.03 

, 1 1 20.5, 0.5, 0.25r r rd d d    

 

 

Figure 4 examines impact of Nakagami-m fading factors on outage performance as considering 

range of interference levels  50 0 dB    . It can be seen clearly that higher level of interference of SIC 

imperfection leads to outage condition. 
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Figure 4. Outage probability under impact of   with 
1 0.9a   , 

2 0.1a  , 
1 20.5, 1R R  ,  

2  , 0.03  ,
1 1 20.5, 0.5, 0.25r r rd d d   . 

 

 

5. CONCLUSION 

In this paper, the performance of the downlink NOMA system with two hop transmission over 

Nakagami-m fading channels is investigated. First, we derived expressions of outage probability to provide 

the analytical evaluation for each user. To confirm the accuracy of the analytical results, Monte-Carlo 

simulations are performed. In addition, by selecting suitable target rate coefficients, Nakagami-m fading 

factors, it can be achieved the outage behaviors of the users. Then, we evaluated the throughput of  

the NOMA system based upon the outage probability of each user. By conducting numerical research on 

several parameters, the lowest outage performance and highest throughputs were obtained. 
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