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Abstract 
The present study is concerned with friction parameters identification in the pushing system of 

projectile of large caliber cannon howitzer. Coulomb model (CM) is adapted to build friction model in the 
process of pushing projectile. Random direction search algorithm (RDSA) is probably to get into the local 
best because of the large number of parameters to identify. So simulated annealing algorithm (SAA) based 
on continuous search space (CSAA) and based on discrete search space (DSAA) is applied to identify 
friction parameters. The identification results show that both CSAA and DSAA have better accuracy and 
convergence than RDSA, and CSAA has better accuracy than DSAA. 
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1. Introduction 
In the pushing system of projectile of large caliber cannon howitzer, dynamic 

performance of projectile is greatly affected due to the existence of friction. It’s necessary that 
friction parameters are identified to develop control strategies in engineering design and 
analysis. Friction is a typical nonlinear process of mechanic system, which includes Static 
Friction, Coulomb Friction, Stribeck Effect and some other complex objects. In the process of 
pushing projectile, the impact of vibration and collision is inevitable, which increase the complex 
of parameters identification. The pushing system of projectile of large caliber cannon howitzer is 
a typical nonlinear system with complex friction parameters and interference terms, which sets 
forth more requirements for parameters identification methods. 

It is very important to choose a suitable model in the process of model identification 
parameters. The dynamic process of the friction phenomenon can’t be truly reflected by using 
the classical friction model including Coulomb friction and viscous friction in practice. At present, 
there are many friction models which have been proposed such as Karnopp [1] model, LuGre 
[2] model and integrated model. Canudas proposed LuGre model in 1995. It can accurately 
describe complex dynamic and static characteristics in the process of friction. Considering the 
impact of collision and vibration, Haonan Ye developed Augment Coulomb Model [3] (ACM) and 
brought a series of sine signal linear combination in Coulomb friction in order to get a more 
precise model.  

For model parameters identification, many traditional optimization algorithms and tools 
have been widely used. Hartman [4] proposed randomly direction search algorithm (RDSA) in 
1972.  Later, Quan Zhen [5] developed RDSA to reduce the computational in 1978. But these 
methods have their own limitation such as local convergence, inefficient and easy to get into the 
local best. Many problems are effectively solved by modern optimization method. Some 
intelligent algorithm have been widely used to solve different kinds of problems [6-7]. Metropolis 
proposed the idea of simulated annealing in 1953, and Kirkpatrick applied it in combinatorial 
optimization problems.  

In this paper, an important experiment is carried out to obtain the data of pushing 
projectile process. Velocity signal is calculated by differencing displacement signal. To get the 
proportion of the low frequency component, a low pass filter is designed to eliminate the high 
frequency component of the data.  Simulated annealing algorithm (SAA) based on two kinds of 
neighborhood structure is proposed. SAA based on continuous search space (CSAA) and 
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discrete search space (DSAA) is adapted to identify friction parameters. At the same time, error 
men square (EMS) is used as a criteria to compare the pros and cons of different methods. 

 
 

2. Friction Model 
2.1 Coulomb Model (CM) 

When only friction is considered in system model, CM divides system friction in three 
main influence factors:  
(1) Coulomb Friction (CF): The friction during the pushing process of the projectile 
(2) Static Friction (SF): The friction which prevents the projectile from static to dynamic 
(3) Viscous Friction (VF): The friction produced by viscous effect between interface materials 
The general form of CM is as follows: 
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where cF  is coulomb friction, vF  is viscous friction coefficient, sF  is static friction, sv  is Stribeck 

velocity, and   is empirical parameter. 
In general, Tustin model is chosen when =1. So CM can be modified as follows:                   
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2.2 Modeling for the Process of Pushing Projectile 
In the process of pushing projectile in Figure 1, the force of projectile F  can be divided 

into two parts: pF  and fF . pF  is the projectile force given by the feeding system. fF  is the 

projectile friction given by the channel. System model can be expressed as: 
 

p fF F F   (3) 
 

Considering the impact of vibration of the projectile and collision between projectile and 
channel, a series of sine signal linear combination are brought in modeling. pF  can be 

expressed as: 
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After substituting Eq. (4) to Eq. (3), the projectile force can be expressed as: 
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Figure 1. The Pushing System of Projectile 

Projectile Channel 

The displacement mark of projectile 
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In Eq. (5), a precise model is got if N→∞. Considering the feasibility of calculation, set N 
as 10. There are twenty six parameters 1 2 26( , )B B B need to be identified in Eq. (5). 

 
 
3. Parameter Identification Methods 
3.1 Random Direction Search Algorithm (RDSA) 

Random direction search algorithm [8] is a method to constrain optimization problems. 
It’s widely used in optimization of mechanical design. The iteration scheme of RDSA is written 
as follows: 

 
( 1) ( ) ( ) , 0,1,k k kx x s k       (6) 

 

where ( )ks  is random search direction of k  times iterations,   is step factor. 
RDSA has advantages such as simple principle, strong applicability and lower 

requirements of the behavior of objective function. But it has limitation such as local 
convergence, inefficient and easy to get into the local best. 

 
3.2 Simulated Annealing Algorithm (SAA) 

SAA is a generic probabilistic algorithm. It’s used to find the optimal solution of the 
optimization problem with a large search space. 
 
3.2.1 The Basic Principles of SAA 

Annealing is a physical process[9]. A metal solid is heated to a certain temperature, and 
all molecules move freely in the state space D. As the temperature dropped, these molecules 
gradually stay in a different state. At the lowest temperature, molecules re-arrange in certain 
structure. Statistical mechanics studies show that molecules meet Boltzmann probability 
distributions when molecules stay in the state r and at a temperature T. It’s expressed as: 
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where ( )E r  is the energy of state r . Bk  is Boltzmann’s constant. ( )Z T  is the normalization 

factor of probability distributions:  
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If T  trends to 0 
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where minr  is the lowest energy state. 0| |D  is the set of lowest energy states. So it’s concluded 

that the probability of the molecules staying in the lowest energy state trends to 1. The changing 
trend of probability which the molecules stay in the lowest energy state is shown in Figure 2(a). 

For molecules in non-lowest energy states, their probability is 1/ | |D . | |D  is the number 

of state space D. It may be above. When T  trends to zero, the probability trends to zero. The 
changing trend of probability is shown in Figure 2(b). 

From the above discussion, the lower temperature is, the higher the probability of the 
lower energy state is. In extreme conditions, only the probability of the lowest energy states is 
not zero. We can solve combinatorial optimization problems by analogy to metal objects 
annealing as follows: 

 
 Combinatorial Optimization Metal Objects 

Solution State 
Optimal Solution Lowest Energy State 

Cost Function Energy 
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(a) 

 

 
 

(b) 
 

Figure 2. The changing trend of probability; a) the lowest energy state, b) the non-lowest energy 
state 

 
 

The optional solution of combinatorial optimization is by analogy to lowest energy in metal 
objects annealing. So the solving process of combinatorial optimization problem 

 min ( ) | ( ) 0,z f x g x x D     is by analogy to annealing process: 

 
min ( )

. . ( ) 0

f x

s t g x

x D




 (10) 

 
where ( )f x  is cost function, ( )g x  is constraint equation, D  is domain. 

 
3.2.2 The Process of SAA 
 
STEP1   Choosing an initial solution 0x ; 0:ix x ; : 0k  ; 0 max:t t (initial temperature); 

STEP2   If the temperature reaches within the loop stop condition, then jump  to STEP3; else, 

jx  is randomly chosen from neighborhood ( )iN x , calculating ( ) ( )ij j if f x f x   ; if 

0ijf  , then :i jx x , else if exp( / ) (0,1)ij kf t random  , then :i jx x ; repeat STEP2;  

STEP3   1 : ( )k kt d t  ; : 1k k  ; if meeting stop condition, end calculation; else, return STEP2 

 
 
3.2.3 SAA for Model 
1. Cost function of SAA 
Cost function of SAA can be given as: 
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Where F  is actual force, *F  is theoretical force, and n  is the length of data. When cost is 
smaller, it shows that parameters are better and the performance of identification is better. 
 
2. Neighborhood structure of SAA 
The range of optimal parameters 1 2 26( , )B B B  known by prior knowledge is  , , 1, 2, , 26i ia b i  

.  k - parameters are randomly selected from 26 parameters:  

 , 1, 2, , 26 , 1, 2, ,
jm jB m j k    

CSAA: 
N variables re-value randomly 
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( )

j j j jm m m mB rand b a a     (12) 

 
DSAA: 
N variables is encoded 0-1 code 
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where the first row of S represent ten positions, the second row of S represent ten 0-1 codes, 
which is binary code of 

jmB . The neighborhood of the solution is as below: 
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3. Control of the annealing  
(1) Initial temperature: 
According to the theory, initial temperature can be estimated as follow: 
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where 10K  . 
(2)The method of temperature dropping 
 

1 , 0,0 1k kt t k       (16) 

 
If   closes to 1, temperature drops slowly.   is set as 0.95. 
(3) The principle of the algorithm ending 
The algorithm ends when temperature is less than the threshold and the cost function don’t 
change. 

 
3.2.4 The Characteristics of SAA 

SAA has the advantages such as the simple calculation process, universal, strong 
robustness, suitable for parallel processing and can be used to solve complex nonlinear 
optimization problems.  

 
 

4. Result of Experiment 
4.1 Data Acquisition and Preprocessing 

In the experiment, three positions of the projectile marked white bright streaks are 
selected as the projectile displacement signal sign in figure 1. The parameters of the experiment 
are defined as follow: sampling frequency is 1kHz and the total recording time is 0.272 seconds.  

Considering system response by collision is more abundant than that by friction and 
pushing force in high frequency. The error is produced by the difference of the displacement 
signal. By using Butterworth low pass filter to process the difference, velocity signal is got and 
shown in Figure 3. The projectile acceleration signal is obtained and shown in Figure 4. 
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Figure 3. Velocity Signal 
 

Figure 4. Acceleration Signal 

 
 
4.2 Identification Results and Analysis 

The results of identification for the methods of RDSA, CSAA and DSAA are shown in 
Table1~4 and Figure 5. 
 
 

Table 1. Results of parameters identification 
Parameters RDSA CSAA DSAA 

0F  444.2 432.7 430 

cF  35.71 30.00 30 

vF  3763.9 3749.9 3750 

sF  186.16 189.99 190 

sV  0.119 0.121 0.125 

 
 

Table 2. Results of parameters identification 
Parameters RDSA CSAA DSAA 

1pF  
678.1 667.5 664.3 

2pF  
996.5 998.1 996.2 

3pF  
1113 1118.9 1114.9 

4pF  
876.3 879.9 880 

5pF  
546.1 559.9 560 

6pF  
44.80 49.99 50 

7pF  
268.5 279.9 280 

8pF  
133.5 139.9 140 

9pF  
411.0 413.0 414.9 

10pF  
9.39 9.99 10.00 
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Table 3. Results of parameters identification 
Parameters RDSA CSAA  DSAA  

1  0.74 0.71 0.69 

2  0.98 0.96 0.95 

3  1.26 1.24 1.23 

4  1.51 1.49 1.48 

5  1.57 1.57 1.55 

6  0.454 0.499 0.500 

7  0.001 0.001 0.001 

8  0.005 0.001 0.001 

9  0.002 0.001 0.001 

10  1.19 1.00 1.00 

 
 

Table 4. Error mean square (EMS) 
 

 
 
 

 

 
Figure 5. Actual Acceleration and Theory Acceleration Comparison 

 
 
5. Conclusion 

In this paper, identification methods of CSAA and DSAA are applied to identify friction 
parameters. As a traditional optimization method, RDSA can’t solve optimization problem 
effectively which may have local optimal solution. SAA is an extension of local searching 
algorithm. Three different results are obtained by RDSA, CSAA and DSAA. Some 
recommendations based on these results are: 
(1) In comparison to RDSA, the identification error of CSAA and DSAA are reduced effectively. 
(2) The identification parameters based on CSAA and DSAA converge to almost the same 

value and have more stability in comparison to RDSA.  

Method RDSA CSAA DSAA 

EMS 59209 58322 58335 
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(3) If the time of searching is sufficient, the identification parameters of CSAA have a better 
accuracy than DSAA because DSAA produces errors during the coding procedure. 

If parameters of SAA cannot be controlled effectively, SAA will degenerate to local 
search algorithm. SAA has the disadvantage of lower convergence speed, long execution time 
and the performance of the algorithm sensitive with initial values and parameters. Future work 
of this study would do more research on the annealing control of CSAA and DSAA to improve 
algorithm efficiency. 
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