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Abstract 
This paper presents a new random weighting method for estimation of Poisson distributions. A 

theory is established for random weighting estimation of the population parameters of two Poisson 
distributions with partially missing data. The strong convergence of the random weighting estimation is 

rigorously proved under the condition of 
1

1
E X


   (0 1)  . The random weighting estimation of 

one-sided confidence intervals in Poisson distribution is also constructed, and its coverage probability is 
rigorously proved by using the Edgeworth expansion under certain conditions. 
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1. Introduction 
Poisson distribution is an approximation of Binomial distribution. For n-times 

independent and repeated random experiments with two results only, Poisson distribution is a 
precise approximation solution when n  is sufficiently large, the probability p  of a given result is 

sufficiently small, and np  remains fixed. Further, Poisson distribution is also an effective 

method to describe the probability of sparse events such as the rates or ratios for diseases of 
the nervous system, the number of traffic accidents in a city and the number of a specific kind of 
particles emitted from radiant materials. In general, Poisson distribution can be used to describe 
the probability for a number of events occurring within a fixed time interval when there is no 
memory on the stochastic process. 

Maximization algorithm is one of the most basic the logical method of mathematical 
statistics, and has been applied in various fields [1-8, 10]. Maximum likelihood estimation is a 
commonly used method to estimate the parameters of Poisson distribution. David and Johnson 
studied the estimation of Poisson distribution based on sample moments, and derived the 
maximum likelihood estimate of asymptotic variance [1]. Irwin improved this work and 
constructed the maximum likelihood estimation of the population mean of a Poisson distribution 
with the zero class missing [2]. Wu and Wan discussed maximum likelihood estimation and 
likelihood ratio test for the identical populations of two Poisson distributions with partially 
missing data, in which the strong coincidence and asymptotic normality were proved [3]. 
Barreto-Souza and Cribari-Neto constructed the maximum likelihood estimation for a 
generalized exponential Poisson distribution [4]. An EM algorithm was developed for maximum 
likelihood estimation of the parameters in Poisson distribution [5, 6]. This algorithm overcomes 
the limitation of the Newton-Raphson algorithm used in maximum likelihood estimation, i.e., 
second derivatives of the log-likelihood are required for all iteration. 

Random phenomenon can be seen everywhere in life, such as gambling, transportation 
etc [9]. Similarly, random theory can also be used to as estimate a parameter. The random 
weighting method is an emergent computational method in statistics [10-12]. It is simple in 
computation and suitable for large samples, and does not require the knowledge on the 
distribution function. It can also be used to calculate a statistic with a probability density 
function, since the resultant statistical distribution actually provides a probability density 
function. Therefore, the random weighting method has been widely applied to solve different 
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problems [10-19]. However, there has been very limited research to use the random weighting 
method for estimation of Poisson distributions. 

This paper adopts the random weighting method to estimation of Poisson distributions. 
The strong convergence for random weighting estimation of the Poisson population parameters 

with partially missing data is rigorously proved under the condition of 
1

1
E X


   (0 1)  . 

Random weighting estimation is also constructed for one-sided confidence intervals in Poisson 
distribution, and its coverage probability is achieved under certain conditions. 

 
 

2. Random Weighting Estimation of Population Parameters of Two Poisson Distributions 
Suppose that there are two Poisson populations, and their distributions are 
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where 0, 1, 2, , 1, 2k i  , and 0i   is a unknown parameter. 

n-times independent experiments are conducted on these two populations, respectively. 
Denote the samples for n-times independent experiments as 1 2( , , , )nZ Z Z  and 1 2( , , , )nY Y Y , 

respectively. For the observation of the first population, iZ  may be lost by the probability of 1 p  

( p  is an unknown constant within 0 1p  ), i.e., the actual observation values for the first 

population are ( , )i iZ   ( 1,2, , )i n  , where 1 2( , , , )n    and 1 2( , , , )nZ Z Z  are independent of 

one another, and ( 1) 1 ( 0)i ip p p      . Obviously, 1
1

n

j
j

n 


  is a random variable, which 

obeys the Binomial distribution with probability parameter p . It represents the number of 

observation values for the first population. We shall denote the 1n  observation values for the 

first population as vector 
11 2( , , , )nX X X . Then 
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2.1. Maximum Likelihood Estimation of Poisson Population Parameters 

In order to establish random weighting estimation, the mathematical representations of 
the Poisson population parameters have to be given. In this paper, the maximum likelihood 
estimation [2, 3], which is a popular statistical method to fitting a mathematical model to data, is 
used to establish the mathematical representations for the Poisson population parameters. 
If only the estimation of 1  is considered, the measured likelihood function is 
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The maximum likelihood estimation of 1  may be written as 
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Similarly, if only the estimation of 2  is considered, the maximum likelihood estimation of 2  

may be given as 
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When examining if two populations are equal, the original assumption 0 1 2:H     (unknown) 

has to be considered. Then, the likelihood function of   may be written as 
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The maximum likelihood estimation of   can be easily obtained as 
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2.2. Random Weighting Estimation of Poisson Population Parameters and Convergence 
Analysis 

Assuming that 1 2, , , nX X X  is a sample of independent random variables with common 

distribution function ( )F x . Let 1, , nx x  be the corresponding observed realizations. Further, we 

shall denote 1 2( , , , )n nX X X X   and 1 2( , , , )n nx x x x  . Then, the corresponding empirical 

distribution function of X  may be written as 
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where ( )iX xI   is the indicator function. 

The random weighting estimation of ( )nF x  is 
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where random vector 1 2( , , , )nV V V  obeys Dirichlet distribution D(1, ,1), that is, 
1
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  and 

the joint density function of 1 2( , , )nV V V  is 1 2( , , ) ( )nf V V V n  , where 1 2( , , )n nV V V D , and 
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A uniformly distributed density function of 1( , , )nV V  can be defined as 

 

1( , , ) ( 1)!nf V V n   (10) 

 

If only the maximum likelihood estimation 1̂  of   is considered, the random weighting 

estimation of 1̂  may be written as 
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Theorem 1 Suppose 
1

1E X
   . For any 0 1   and 0,   when N  , 
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The following Lemma is used to prove the theorem. 
Lemma 1 [15] When 2n   and 1r  , there exists a limited number 0C   such that 
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where *E  represents the conditional expectation under the condition that 1 2, , nX X X  are 

given, and 2 2
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We now start to prove Theorem 1. Let 
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where iEX    . 
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If 2n  , by (14) and (16), there exists C such that 
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where 
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1g E X
    is a bounded constant, and ,nW   is a backward martingale. 
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By the Kolmogorov’s maximum inequality [10], we have 
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where 0C  and 1C  are two bounded positive constants. For a constant 0 1h  , choosing 1r   

such that 
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By (19) and (21), we have ( ) 0vP B   and ( ) 0 ( )P A B N    . Thus, 
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By appropriately selecting parameter r, (13) follows from (18)-(22). The proof of Theorem 1 is 
completed. 
 
 
3. Random Weighting Estimations of One-Sided Confidence Intervals in Poisson 

Distribution 
One-sided confidence intervals such as the standard Wald interval play an important 

role in many applications. However, the standard Wald interval suffers a pronounced systematic 
bias in the coverage [20, 21]. In this section, we first construct the random weighting estimation 
of the Wald interval for the mean   of Poisson distribution, and then analyze the coverage 

probability of the random weighting estimation. For the sake of concise description, we shall 
focus on the random weighting estimation for the upper limit of the Wald interval. The random 
weighting estimation for the lower limit of the Wald interval can be constructed in the similar 
way. 

Suppose that 1 2, , , nX X X  are the random variable serials of an independent and 

identical distribution with common distribution function F(x), and Poi ( )  is a member of the 

discrete natural exponential family with a quadratic variance function. In the case of Poisson 

distribution,   . Therefore, the variance 2  is a quadratic function of mean   in Poi ( )  
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3.1 Random Weighting Estimation of Wald Interval 

By using the normal approximation [20], the Wald interval can be constructed as 
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Accordingly, the random weighting estimation of the Wald interval may be written as 
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The 100(1 ) % upper limit of the Wald interval is 

 
1/2 1/2 2 1/2 1/2ˆ ˆ ˆ ˆ ˆ[0, ( ) ] [0, ( ( ) ) ]u

wCI u V n u u b u n         (26) 

 
Accordingly, the 100(1 ) % upper limit for random weighting estimation of the Wald interval 

may be written as 
 

1/2 1/2 2 1/2 1/2ˆ ˆ ˆ ˆ ˆ[0, ( ) ] [0, ( ( ) ) ]u
wC I u V n u u b u n               (27) 

 
3.2 Coverage Probability of Wald Interval 

Consider the coverage of a general upper limit interval 
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where 
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Theorem 2 Assuming 1/2
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The following Lemma is used to prove Theorem 2. 
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where 

1 1

2 2( , ) ( , , ) ( )g z g z n n n z n n z     
 

      (38) 
 

where (x)_ denotes the largest integer less than or equal to x . 
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If z  depends on n , i.e., 
 

1 3
12 2

0 1 2 ( )z z c n c n O n
      (39) 

 
where 0z , 1c  and 2c  are constants, then, 

 

 

1 1
1 12 2

0 1 0 1 2 0

3
2 1 2

1 3 0 2 0 0

( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )

( , ) ( ) ( , ) ( ) ( )

nF z z p z z n z z n p z z n

z p z z z z n O n

     

    

  

 

   

   

 



 (40) 

 
where 
 

2 1
1 1 0

1
( ) (1 )(1 2 )

6
p z c z b       (41) 

 

2 3 1
2 2 0 1 0 0 2 0

1 1
( ) ( 3 )(1 2 ) ( )

2 6
p z c z c z z b p z         (42) 

 

3 1
3 1 0

1
( ) ( 3)(1 2 )

6
p z c z b       (43) 

 
We now start to prove Theorem 2. By (30) and (33), 
 

1
2 1 22

1 2 1 2

3
2 3 2 1 2

1 2 2

1 1
( (1 2 )) {( )

2 2

1 1 1
( )(1 2 ) ( ) } ( )

2 2 8

Wz k s bs k b n r bk bs k

k s bs b r k n O n

  

   



  

        

     

 (44) 

 
Denoting 
 

2 1
1 1 2

2 2 3 2
2 1 2 1 2 2

1
( (1 2 ))

2
1 1 1 1

{( ) ( )(1 2 ) ( ) }
2 2 2 8

c s bs k b

c r bk bs k k s bs b r k

  

   

 

  

    

        
 (45) 

 

Wz  may be rewritten as 

 
1 3

* * 12 2
1 2 ( )Wz k c n c n O n

       (46) 

By (40), the coefficient of the non-oscillatory term 
1

2( )O n


 in the Edgeworth expansion of the 

coverage ( ) 1 ( )n WP C I F z 
    may be written as 

 

2 1
1 1 1

2 2 1
1 2

1
( ) ( ) ( 1)(1 2 )

6
1 1 1 1

{( ( )) ( 2( )) }
3 6 3 6

W Wp z p z c k b

s k s k b

 

 

  



      

     



 (47) 

 
Choose 
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2
1

2
2

1
(2 1)

6
1

(2 1)
3

s k

s k

 

 
 (48) 

 

such that *
1 ( ) 0Wp z   for all  . Therefore, the 

1

2( )O n


 non-oscillatory term in (40) is 

disappeared. 

Similarly, the coefficient of the non-oscillatory term 1( )O n  in the Edgeworth expansion 

of ( )P C I 
  may be obtained from (42) as 

 

2 2 2
2 2 1 2

1 1 1 1
( ) ( ) (13 17) (2 7)

2 18 2 36W Wp z P z k r k b k r k              
   

  (49) 

 
Let 
 

2
1

2
2

1
(13 17)

18
1

(2 7)
36

r k b

r k

 

 
 (50) 

 

such that 2 ( ) 0wp z  . Consequently, the 1( )O n  non-oscillatory term in (40) is 

disappeared. Therefore, 
 

1 2 1 2 0s s r r     (51) 

 
Substituting (51) into (44),  
 

1 3
2 1 2 3 12 21 1
(1 2 ) ( ) ( )

2 8Wz k k b n b k n O n  
           (52) 

 
Since the sum of (34) and (40) is equal to one, 
 

( ) 1 ( )u
W n WP C I F z     (53) 

 
The proof of Theorem 2 is completed. 

 
 

4. Conclusion 
This paper presents a new random weighting method for estimation of Poisson 

distributions. The contribution of the paper is that theories are established for random weighting 
estimation of the population parameters of two Poisson distributions with partially missing data 
and for random weighting estimation of one-sided confidence intervals in Poisson distribution. 
Future research work will focus on applications of the established theories in engineering 
practices. 
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