
TELKOMNIKA, Vol.11, No.1, January 2013, pp. 115~122
ISSN: 2302-4046
  115

Received September 28, 2012; Revised November 22, 2012; Accepted November 30, 2012

Using Relative Distance and Hausdorff Distance to
Mine Trajectory Clusters

Bo Guan, Liangxu Liu*, Jinyang Chen
Ningbo University of Technology

Cuibai Road 89#, Haishu District, Ningbo China, 86-0574-887081232
*corresponding author, e-mail: luransh@126.com

Abstract
Along with development of location service and GPS technology, mining information from

trajectory datasets becomes one of hottest research topic in data mining. How to efficiently mine the
clusters from trajectories attract more and more researchers. In this paper, a new framework of trajectory
clustering, called Trajectory Clustering based Improved Minimum Hausdorff Distance under Translation
(TraClustMHD) is proposed. In this framework, the distance between two trajectory segments based on
local and relative distance is defined. And then, traditional clusters algorithm is employed to mine the
clusters of trajectory segment. In additional, R-Tree is employed to improve the efficiency. The
experimental results showed that our algorithm better than existing others which are based on Hausdorff
distance and based on line Hausdorff distance.

Keywords: trajectory clustering, movement patterns, hausdorff distance

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Along with the development of GPS and Location Service, more and more location data
are collected in application servers, such as, traffic control, weather monitor, intelligent
navigation, biomedicine, business decisions and anti-terrorism. How to mine information from
these datasets becomes increasingly broad and important research [1-2].

As clustering is one of researching hot-point of data mining, there are many researchers
trying to mine clusters from location data, and lots of approaches in location data clustering are
proposed. According to clustering target, existing approaches could be divided into moving
object clustering and trajectories clustering. The former is focused on the cluster of moving
objects [3-7], and the latter is trajectories [8-10]. In this paper, we focus on the latter.

As the image, Location data is stored by point sets in most applications. Some
approaches engaged Hausdorff Distance and its variants, which is popular distance metrics in
computer graphics and pattern recognition, to measure the similarity between the trajectories,
such as, line Hausdorff distance [7], Hausdorff distance [12-14]. But, these methods were all
based on absolute distance. Obviously, it is not fitted to measure the dissimilarity between
trajectory data.

Example 1: As shown in Figure 1, given seven trajectory segments T1, T2, T3, T4, T5, T6, and T7.
From the graph, we can find: there are same moving pattern in T1, T3, T5, and T7, and same
moving pattern inT2, T4, and T6. However, existing algorithms based on absolute distance, such
as TRAOD, are difficult to distinguish between them.

In order to solve the defects of the approaches, this paper proposes a new similarity
measure between trajectory segments, which is based on relative distance. In which, each
trajectory is firstly divided into the segments. And then each segment is compared to the
segments from other trajectories to obtain the clusters.

2. Similarity Definition of Trajectory Segments

Hausdorff Distance (HD for short) is used to measure the similarity between two point
sets, which is used to measure the shape between binary images in pattern recognition. And

TELKOMNIKA ISSN: 2302-4046  116

Using Relative Distance and Hausdorff Distance to Mine Trajectory Clusters (Bo Guan)

then, HD was employed to measure the similarity between trajectories [5]. However, being
different from image’s disorder, the points in the trajectories are ordered. Therefore, some
changes must be made in HD to fit the trajectories. For the convenience of discussion, two
definitions are introduced firstly.

Figure 1. The Example in Trajectory Data

Definition 1: when one trajectory segment is compared to another one, the first segment is
called The Target, and another one is called The Compared.

Definition 2: k-comparing unit (k-units) consists of k-continuous points in the trajectory.

Let T = {Ti| 0 ≤ i < l} be the set of trajectories, and l is the trajectory number, ni is point
number of Ti, and Sim = {pim, …,pi(m+k-1)} is one k-unit of Trajectory Ti. Given two trajectories Ti,
Tj, Sim is one k-unit of Ti, Sjn is one k-unit of Tj. the pair (Sim, Sjn) is called k-unit pair.

Minimum Hausdorff Distance under Translation is a measure used to measure relative
distance between two points set, and in the field of pattern recognition it is often used in
comparing shapes based on the binary image. Although the trajectory and the image have the
same representation - point set, generally, the image is disordered, and trajectory point is
disorder. HD is aimed to measure the distance between disorder point sets. However, trajectory
point is the order. As a result, we made a change in HD, and each point of k-unit is compared
each one of other k-unit one by one. Next, the feature of trajectory point represents moving
pattern of objects, and moving pattern owns local similarity, that is to say, trajectory point only is
similar to its neighboring points.

Definition 3: Given a neighboring threshold ω, point pi. if point pj belongs to ω- neighboring set
of pi only if dist(pi- pj) <ω, denotes pj =Nω(pi).

Our idea is according to Minimum Hausdorff Distance under Translation, the distance
between Sim and Sjn is as follows: let Sim is fixed, Sjn is translated to make them to the closest,
and Improved Minimum HD under Translation can be written as:

Definition 4: given k-units Sim, Sjn, local threshold λ, and neighbouring threshold ω. The relative
distance is defined as:

 (1)

where

() ()0,..., 1
(,) max { (,)}ix jy i x r j y rr k

d t t d p p t  
 

() ()
1 1 (,)0 i x r j y r

kt dist p prk  
  

(,), (,)
(,)

, (,)
ix jy ix jy

ix jy
ix jy

dist p p t dist p p
d p p t

dist p p








 
 

 

T1

T2

T4

T5

T6

T7

T3

117  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 1, January 2013 : 115 – 122

t is average distance between each point pair (pi(m+x), pj(m+x)) (0≤x<k-1). d(pix, pjy-t) denote point
the distance between pjy and pix after k-unit Sjn is translated by t. dist(pix, pjy) denote Euclidean
distance between the points pix, pjy, and if dist(pix, pjy)> ω, pix must be not similar to pjy. λ is local
threshold, and the distance between two points is ∞ if their Euclidean distance after translating t
is more than λ.

According to above analysis, we can compare not only the shape of trajectory segments
but also inherent moving pattern. Improved Minimum Hausdorff Distance under Translation is
more suited to measure the similarity between the trajectories. It not only eliminates common
deviation through translating trajectory, but also takes moving pattern into account through
measure distance by point-to point.

Because k-unit is trajectory segment with less point number (k), comparing trajectory
segments must start with dividing trajectory segments into k-units. Based on this method, our
solution determines, whether two trajectory segments are similar or not, by measuring their k-
units as following Definition.

Definition 5: Given two k-units Sim, Sjn, if d(Sim, Sjn) is less than local similar threshold θ, Sim, Sjn
are Local Similarity, denotes Sjn έ LS(k, θ)(Sim).

Definition 6: Given two trajectory segments Su , Sv, Suv

+={p| p∈Sim, Sjn ∈LS(k, θ)(Sim) }. If the
following quotation is satisfied, Su , Sv are Global Similarity:

|
 Suv

+| ≥ ζ * |Su|

where, |.| denotes points numbers in the set, and ζ is Global Similarity threshold, provided by
the user in advance.

Input: Trajectory set T = { T1, T2, T3…Tl }
Output: Clusters set Setc ={C1…Cnumclus}
01: for each Ti do
02: Sim=PartitioningTrajectory(Ti);
03: add Sim into set S;
04: Setc = ClusterTrajectory(T);
06: return Setc

Figure 2. Pseudo Code of TraClustMHD

3. The Framework of TraClustMHD

In this section, we focus on TraClustMHD framework. The algorithm could be divided
into three phases. Firstly, each trajectory could be divided into trajectory segments by
characteristic point; secondly, according to above similarity definitions, the similarity of each two
trajectory segments is evaluated, in here, an optimized method is introduced to find out
candidate similar k-units; finally, traditional clustering algorithm is employed to search the
clusters of trajectory segments. Figure 2 shows its pseudo code.

3.1. Partitioned by character point

In order to partition the trajectory efficiently, characteristic point [7] is employed.
Character point is the point in which moving objects changes their speed and direction
significantly. Figure 3 shows sub- segment Ti which is formed eight points (p1, p2, … and p8).
Obviously, p1, p4, p5, p6, and p8 are character points. Figure 4 shows pseudo code of partitioning
trajectory. For each trajectory, the first step is taking start point and end point into Character
Point Set Setcp, the second step is that each point would be measure whether its changes in the
direction or speed is more than given threshold, if it is true, this point is regarded as character
point, and added into Character Point Set.

   2 2
(,)ir jr ir jr ir jrdist p p p x p x p y p y   

TELKOMNIKA ISSN: 2302-4046  118

Using Relative Distance and Hausdorff Distance to Mine Trajectory Clusters (Bo Guan)

According to above algorithms, trajectory Ti in Figure 3 will be partitioned by character
points, and formed as {(p1, p2, p3), (p4, p5), (p5, p6), (p6, p7, p8)}.

Figure 3. The Example of Character Point

Input: Ti={ p1, p2, …, pni}, MinDir, MinVelocity
Output: Setcp
PartitioningTrajectory(Ti)
01: Add p1, pni into the Setcp;
02: for each pj (pj∈Ti, 1<j<ni) DO
03: Directory= computeDirectory(pj-1, pj, pj+1)
04： Velocity = computeVelocity(pj-1, pj, pj+1)
05: If (Directory > MinDir)

or (Velocity > MinVelcity)
06: Add pj into the set Setcp;

Figure 4. Pseudo Code of PartitionTrajectory

3.2. Optimized Searching Method by Feature Matrix
According to our solution, each k-units need to be compared to all k-units from others

trajectories. Obviously, its comparing cost is very expensive. How to optimize this searching
process is another important problem in our framework. Our solution is finding out all candidate
local similar k-units pairs by sort of similar of trajectory feature. In order to describe clearly,
Distance Feature Matrix are introduced firstly. Distance Feature Matrix consists of point pairs
which come from two trajectories respectively.

Definition 7: Suppose The Target Si = {pi1, ..., pim} and The Comparing Sjn = {pj1, ..., pjm}, the
distance between each point pairs is:


















),(),(

),(),(

1

111

jnimjni

jimji

pppp

pppp

M







Definition 8: Diagonal Serial No.(DSNo.) is the difference between the row and the column of
matrix, denotes DSNo(pie, pjf) = e-f, and (pie, pjf) is one matrix elements.

Definition 9: k-diagonal Neighboring (k-DN for short) consists of k matrix elements only if the
following two conditions are satisfied:

(1) DSNo(pie1, pjf1) = … = DSNo(piek, pjfk);
(2) e2 –e1 = … = ek – ek-1 =1.
Obviously, k-DN includes two k-units from two trajectory segments. Therefore,

according to Definition 3, two k-units couldn’t be similar only if one element (pie1, pjf1) satisfied
that the distance between its points is more than neighbour threshold ω. Based on this idea, if
we orders matrix elements by (DSNo, RowID). If continuous k elements all satisfy Definition 3,
corresponding k-units in this k-DN is candidate similar k-unit pair.

Therefore, our solution is as follows (Pseudo code as Figure 5): Firstly, for each point
pim of each trajectory Ti, Nω(pim) is finding out by sort of R-Tree, and the element (pim, pjn) would
be added into candidate matrix set (Candidate Set in the short), which elements order by (i,
DSNo, m), only if pim, and pjn satisfy pjn∈Nω(pim), dist(pim, pjn)< ω. Secondly, top matrix elements
(pim, pjn) would be removed from Candidate Set one by one. If continuous k elements consists k-
DN, the distance between its k-unit pair could be checked to determine whether two k-units is
local similar. If it is satisfied, all points of target k-unit would insert into local similar point set S+,
in which all points with similar segment are included. After all pairs of trajectory segment are
checked, local similar degree of the trajectory segment could be taken out. Finally, after local
similar degree of all trajectory segments is calculated, DBSCAN, which is traditional clustering
algorithm, is introduced into mine trajectory segments clusters.

cp1

p2 p1 p3

p4

p5
p6

p7

p8

cp2

cp3 cp4

Ti

character point
cp5

119  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 1, January 2013 : 115 – 122

Figure 5. the Example of Distance Feature Matrix

Example 2: given A={a1,a2,a3,a4} is The Target in Definitoin 1(Figure 5), and T1={t1,…,t4} is The
Comparing. Distance Feature Matrix between A and T1 is as follows.





























),a(),a(),a(),(a

),a(),a(),a(),(a

),a(),a(),a(),(a

),a(),(a),(a),(a

),a(),a(),(a,a

45352515

44342414

43332313

42322212

41312111

tttt

tttt

tttt

tttt

tttt

M

）（

The follow takes Example 2 as the example to describe the processing of algorithms. In

the first step, R-Tree is employed to search all neighbour points of each point. In the Example 2,
all neighbour points of {a1,a2,a3,a4} is Nω(a1)={t1,t21,t31}，Nω(a2)={t2,t22,t32}，Nω(a3)=
{t3,t23}，Nω(a4)={t4,t24,t34}. If the element, which distance is more than ω, is set to zero, Feature
Matrix between A and T1 is translated to:

According above distance feature matrix, we could find out all candidate similar k-unit

pairs easily. If k is set to 3, we could get two candidate similar k-units pairs {(a1, t1), (a2, t2), (a3,
t3)}, { (a2, t2), (a3, t3), (a4, t4)} in Example 2.

3.3. TraClustMHD Alogrithm

In this section, we present how to use the local features to improve the efficiency of the
proposed approach. We first assume that all points are indexed by R-Tree. Fig. 6 shows the
pseudo code of the optimized outlying trajectory detection. As mentioned previously, this
algorithm consists of two phases: pruning and refining. For each trajectory, the function of
ClusteringTrajectory is used to achieve the pruning and refining.

First, for each target segment Si, all Nλ(pix) are discovered by searching R-Tree and
then form Nλ(Ti), which is sorted by (tid, DSNo.). This process is achieved by the function of
QueryingRTree.

Second, while the ordered stack stackNeigh is not empty, the following steps are
executed:
(1) The entry fEn is obtained from the top of the ordered stack stackNeigh, and this recursive

operation is skipped when all trajectories are processed.
(2) It is checked whether fEn and lastEn are k-DN adjacent (lastEn is the latest top of stack).

One of the following operations works:
i) If the target trajectory of fEn is different from that of lastEn, which implys fEn is
obtained from new Nλ(Tj) (j<>i), LSArray is cleared, CandLSSet is clear, and curEn is
inserted into CandLSSet.
ii) if fEn and lastEn belongs to same trajectory and aren’t k-DN adjacent, CandLSSet is
clear, and curEn is inserted into CandLSSet, and curDSNo is set to DSNo of curEn;

1 1

2 2

3 3

4 4

a , 0 0 0

0 (a ,) 0 0

0 0 (a ,) 0

0 0 0 (a ,)

t

t
M

t

t

 
 
   
 
  

（ ）

ω

T1

A
a1 a2 a3

a4

t1

t2

t3

t4

ω

ω
ω

TELKOMNIKA ISSN: 2302-4046  120

Using Relative Distance and Hausdorff Distance to Mine Trajectory Clusters (Bo Guan)

iii)if fEn and lastEn are k-DN adjacent: (a) fEn is inserted before the last element of
LSArray, which is a point pair array with k-length (the function addEntry is called); (b) if
the number of point pairs in the LSArray is k and the dissimilarity between its k-
segments is less ζ (the function KMatch is called), the points pix (pix∈Ti) in LSArray are
inserted into the point set Result_Array.

 (3) lastEn is replaced by fEn.
Finally, traditional clustering analysis (DBSCAN in here) is employed to mine all

segment clusters.

Input: A set of trajectories T = { T1…Tn }, parameters ζ, k, ω, λ, MinDirectory,
MinVelocity.
Output: A set of clusters Setc ={C1…Cnumclus}
ClusteringTrajectory()
01. For each sub-segment Si S DO
02. Result_Array= MatchTrajectory (Si, i, ζ, k, ω, λ)
03. Setc =Cluster(Result_Array)
MatchTrajectory (S, I, θ, p, k, ω)
01: stackNeigh = QueryRTree (Si, ω);
02: while (stackNeigh isn’t NULL)
03: curEn = stackNeigh. RevTop ();
04: If (curEn. traj != cur_traj){
05: cur_traj = curEn. traj;
06: CandLSSet=NULL; LSArray=NULL;
07: CandLSSet.addEntry(curEn);
07: else
08: If (curEn.DSNo!=curDSNo) or (curEn.pos-1 == curPos)
09: CandLSSet=NULL; curDSNo = curEn.DSNo;
11: CandLSSet.addEntry(curEn);
10: else
11: If ((CandLSSet.size())> k-1)
12: isMatch=KMatch(curEn, k, λ));
13: If (isMatch)
14: LSArray.addEntry(curEn，CandLSSet);
15: If LSArray.Size()≥ ζ*Si.Size();
16: Result_Array[i][j]=1;
17: Else Result_Array[i][j]=0;
18: lastEn =curEn;
18 return (Result_Array);

Figure 6. the Example of Distance Feature Matrix

4. Experimental Analysis
4.1. Experimental Environment

We implement relative algorithms and TraClustMHD in Visual C++, on the XP OS and
execute all experiments on a notebook with Centrino 2 2.1G CPU and 2G main memory. The
experimental dataset is from the wealth of hurricane information including charts on the track of
the storm plus a text based table of tracking information. We select hurricane data of Atlantic
hurricanes from 1850 to 2010, which has 1294 trajectories with 30368 points. All points in
trajectory data are imported into binary file according to its trajectory ID, and then indexed by
R*-Tree. And clustering algorithm is DBSCAN.

4.2. Experimental Analysis

Based on ensuring best performance through adjusting each parameter, we make a
comparison in Trajectory Clustering through Line Hausdorff Distance [8], Hausdorff Distance
[16], and our framework. Figure 7 shows comparing results in them. From the graphs, we could
find that all algorithms shows moving pattern of hurricane. However, there are some bugs in the
algorithms based on Line HD and HD because based on absolute distance and global

121  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 1, January 2013 : 115 – 122

comparing. Both of them could find out the clusters in Region A and C, because this Region
own enough trajectories. But in our framework, the clusters in Region A and C are disappear.
The reason is that moving direction is taken into account in our framework.

(a) Result of using Line Hausdorff Distance

(b) Result of using Hausdorff Distance

(c) Result of using TraClustMHD

Figure 7. Comparing Results in Three Algorithm

Figure 8 shows that the comparison of CPU Time in three algorithms. From the graph,

TraClustMHD owns higher efficiency than others. And more trajectory number is, more
superiority TraClustMHD owns. The reason is that R-Tree are employed to eliminate
computation between irrespective points.

Figure 8. Comparing result in CPU time

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000

C
P
U
 T
i
m
e

Trajectory Number

LHD
HD
TraClustMHD

TELKOMNIKA ISSN: 2302-4046  122

Using Relative Distance and Hausdorff Distance to Mine Trajectory Clusters (Bo Guan)

5. Conclusion
Along with more researchers focusing on trajectory clustering, this paper proposes a

trajectory clustering framework based on local relative distance. This framework not only uses
local relative distance to measure similarity more correct, but also improves the performance
through indexed by R-Tree. Experimental Results show that our framework has more efficiency
and effective than other algorithms.

Acknowledgement

This work was supported by Zhejiang Provincial Education Department scientific
research project of under grant No. Y201119588, and Natural Science Foundation of Ningbo
under grant No. 2009A610090, No. 2010A610106, and No. 2011A610175.

References
[1] YF Li, JW Han, J Yang. Clustering Moving Objects. Proceedings of the 10th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. Seattle. USA, 2004; 617-622.
[2] Ester M, Kriegel, HP, Sander J, and Xu, X. A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. Proc. 2nd Int'l Conf. on Knowledge Discovery and Data Mining,
Portland, Oregon. 1996; 226-231.

[3] S Gaffney and P Smyth. Trajectory clustering with mixture of regression models. Proceedings of the
5th International Conference on Knowledge Discovery and Data Mining (KDD’99), San Diego, 1999;
63–72.

[4] D Chudova, S Gaffney, E Mjolsness and P Smyth. Translation invariant mixture models for curve
clustering. Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining
(KDD’03), Washington. 2003; 79-88.

[5] M Nanni and D Pedreschi. Time-focused density- based clustering of trajectories of moving objects.
Journal of Intelligent Information Systems. 2006; 27(3): 267-289,

[6] Hwang JR, Kang HY, Li KJ. Spatio-temporal Similarity analysis between trajectories on road networks.
Proceeding of 24th international conference on Perspectives in Conceptual Modeling
(ER’05).Klagenfurt, Austria. 2005; 280-289.

[7] J Lee, J Han, and Kyu-Young Whang. Trajectory clustering: A partition-and-group framework. Proc.
2007 ACM SIGMOD Int'l Conf. on Management of Data, Beijing China. 2007. 593-604.

[8] Christian S Jensen, Dan Lin, Beng Chin Ooi. Continuous Clustering of Moving Objects. Knowledge
and Data Engineering. 2007; 19(9): 1161-1174.

[9] Yingyi Bu, Lei Chen , Ada Wai-Chee , Fu Dawei Liu. Efficient Anomaly Monitoring Over Moving Object
Trajectory Streams. KDD’09, Paris, France. 2009: 159-168.

[10] Zhenhui Li, Jae-Gil Lee, Xiaolei Li and Jiawei Han. Incremental Clustering for Trajectories.
Proceedings of the 15th international conference on Database System for Advance Applications.
Tsukuba Japan. 2010: 32-46.

[11] Zhen hui, Jiawei Han, Ming Ji. et al. MoveMine: Mining Moving Object data for discovery of aninal
movement patterns. ACM Transactions on Intelligent System and Technology (TIST). 2010. 2(4):
37:1-37:32

[12] Lou Jian-guang, Liu Qi-feng, Tan Tie-niu, et al. Semantic interpretation of object activities in a
surveillance system. Proceedings of the 16 the International Conference on Pattern Recognition
(ICPR’02), Washington. 2002; 777-780.

[13] Junejo IN, Javed O, Shah M. Multi feature path modeling for video surveillance. 17th International
Conference on the Pattern Recognition (ICPR’04), Washington. 2004; 716-719.

[14] Khalid S, Naftel A. Evaluation of matching metrics for trajectory-based indexing and ret rieval of video
clips. Proceedings of the Seventh IEEE Workshops on Application of Computer Vision (WACV/
MO2TION’ 05), Washington. 2005; 242-249.

[15] Qu Lin, Zhou Fan, Chen Yao-wu. Trajectory classification based on Hausdorff distance for visual
surveillance system. 2009; 39(6): 288-299.

